Using the Model-Based Residual Bootstrap to Quantify Uncertainty in Fiber Orientations From Q-Ball Analysis

Bootstrapping of repeated diffusion-weighted image datasets enables nonparametric quantification of the uncertainty in the inferred fiber orientation. The wild bootstrap and the residual bootstrap are model-based residual resampling methods which use a single dataset. Previously, the wild bootstrap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2009-04, Vol.28 (4), p.535-550
Hauptverfasser: Haroon, H.A., Morris, D.M., Embleton, K.V., Alexander, D.C., Parker, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bootstrapping of repeated diffusion-weighted image datasets enables nonparametric quantification of the uncertainty in the inferred fiber orientation. The wild bootstrap and the residual bootstrap are model-based residual resampling methods which use a single dataset. Previously, the wild bootstrap method has been presented as an alternative to conventional bootstrapping for diffusion tensor imaging. Here we present a study of an implementation of model-based residual bootstrapping using q -ball analysis and compare the outputs with conventional bootstrapping. We show that model-based residual bootstrap q -ball generates results that closely match the output of the conventional bootstrap. Both the residual and conventional bootstrap of multifiber methods can be used to estimate the probability of different numbers of fiber populations existing in different brain tissues. Also, we have shown that these methods can be used to provide input for probabilistic tractography, avoiding existing limitations associated with data calibration and model selection.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2008.2006528