Synthesis and intracellular transportation of type I procollagen during functional differentiation of odontoblasts
The expression of type I collagen, the most component of dentin extracellular matrix proteins (ECMs) in odontoblast is correlated with the activity of dentin formation. Since odontoblast possesses a distinct cellular process for protein transport into the dentinal tubule, it is important to examine...
Gespeichert in:
Veröffentlicht in: | Histochemistry and cell biology 2009-05, Vol.131 (5), p.583-591 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The expression of type I collagen, the most component of dentin extracellular matrix proteins (ECMs) in odontoblast is correlated with the activity of dentin formation. Since odontoblast possesses a distinct cellular process for protein transport into the dentinal tubule, it is important to examine the intracellular protein localization. However, a study focusing on odontoblast processes has not been performed. Type I collagen is synthesized as procollagen, which is immediately converted to collagen upon secretion. After characterization of antiserum to rat type I procollagen, we investigated the intracellular localization of type I procollagen in odontoblasts during and after dentinogenesis, using immunohistochemistry and in situ hybridization. The level of mRNA expression decreased during dentinogenesis, whereas the intracellular localization of type I procollagen in odontoblast processes become more distinct. The percentage of dentinal tubules with type I procollagen increased significantly with aging. Odontoblasts in pulp horn, in particular, showed moderate expression of type I procollagen after dentinogenesis. Since loss of occlusion also caused a significant decrease in type I procollagen, we concluded that occlusal stimulation activated type I procollagen synthesis in odontoblasts. We also suggest that analysis of intracellular transport of type I procollagen via odontoblast processes may be a new approach to evaluation of odontoblast function. |
---|---|
ISSN: | 0948-6143 1432-119X |
DOI: | 10.1007/s00418-009-0556-6 |