Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals

CD4(+)CD25(+) regulatory T cells (Tregs) mediate peripheral T-cell homeostasis and contribute to self-tolerance. Their homeostatic and pathologic trafficking is poorly understood. Under homeostatic conditions, we show a relatively high prevalence of functional Tregs in human bone marrow. Bone marrow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2004-11, Vol.64 (22), p.8451-8455
Hauptverfasser: Zou, Linhua, Barnett, Brian, Safah, Hana, Larussa, Vincent F, Evdemon-Hogan, Melina, Mottram, Peter, Wei, Shuang, David, Odile, Curiel, Tyler J, Zou, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CD4(+)CD25(+) regulatory T cells (Tregs) mediate peripheral T-cell homeostasis and contribute to self-tolerance. Their homeostatic and pathologic trafficking is poorly understood. Under homeostatic conditions, we show a relatively high prevalence of functional Tregs in human bone marrow. Bone marrow strongly expresses functional stromal-derived factor (CXCL12), the ligand for CXCR4. Human Tregs traffic to and are retained in bone marrow through CXCR4/CXCL12 signals as shown in chimeric nonobese diabetic/severe combined immunodeficient mice. Granulocyte colony-stimulating factor (G-CSF) reduces human bone marrow CXCL12 expression in vivo, associated with mobilization of marrow Tregs to peripheral blood in human volunteers. These findings show a mechanism for homeostatic Treg trafficking and indicate that bone marrow is a significant reservoir for Tregs. These data also suggest a novel mechanism explaining reduced acute graft-versus-host disease and improvement in autoimmune diseases following G-CSF treatment.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-04-1987