Pathophysiology of stroke: lessons from animal models

The current pathophysiological understanding of stroke is substantially based on experimental studies. Brain injury after cerebral ischemia develops from a complex signaling cascade that evolves in an at least partially unraveled spatiotemporal pattern. Early excitotoxicity can lead to fast necrotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic brain disease 2004-12, Vol.19 (3-4), p.151-167
Hauptverfasser: Mergenthaler, Philipp, Dirnagl, Ulrich, Meisel, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current pathophysiological understanding of stroke is substantially based on experimental studies. Brain injury after cerebral ischemia develops from a complex signaling cascade that evolves in an at least partially unraveled spatiotemporal pattern. Early excitotoxicity can lead to fast necrotic cell death, which produces the core of the infarction. The ischemic penumbra that surrounds the infarct core suffers milder insults. In this area, both mild excitotoxic and inflammatory mechanisms lead to delayed cell death, which shows biochemical characteristics of apoptosis. While brain cells are challenged by these deleterious mechanisms, they activate innate protective programs of the brain, which can be studied by means of experimentally inducing ischemic tolerance (i.e., ischemic preconditioning). Importantly, cerebral ischemia not only affects the brain parenchyma, but also impacts extracranial systems. For example, stroke induces a dramatic immunosuppression via an overactivation of the sympathetic nervous system. As a result, severe bacterial infections such as pneumonia occur. Complex signaling cascades not only decide about cell survival, but also about the neurological deficit and the mortality after stroke. These mechanisms of damage and endogenous protection present distinct molecular targets that are the rational basis for the development of neuroprotective drugs.
ISSN:0885-7490
1573-7365
DOI:10.1023/b:mebr.0000043966.46964.e6