Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE

TEPITOPE is a prediction model that has been successfully applied to the in silico identification of T cell epitopes in the context of oncology, allergy, infectious diseases, and autoimmune diseases. Like most epitope prediction models, TEPITOPE’s underlying algorithm is based on the prediction of H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2004-12, Vol.34 (4), p.468-475
Hauptverfasser: Bian, Hongjin, Hammer, Juergen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 475
container_issue 4
container_start_page 468
container_title Methods (San Diego, Calif.)
container_volume 34
creator Bian, Hongjin
Hammer, Juergen
description TEPITOPE is a prediction model that has been successfully applied to the in silico identification of T cell epitopes in the context of oncology, allergy, infectious diseases, and autoimmune diseases. Like most epitope prediction models, TEPITOPE’s underlying algorithm is based on the prediction of HLA-II peptide binding, which constitutes a major bottleneck in the natural selection of epitopes. An important step in the design of subunit vaccines is the identification of promiscuous HLA-II ligands in sets of disease-specific gene products. TEPITOPE’s user interface enables the systematic prediction of promiscuous peptide ligands for a broad range of HLA-binding specificity. We show how to apply the TEPITOPE prediction model to identify T cell epitopes, and provide both a road map and examples of its successful application.
doi_str_mv 10.1016/j.ymeth.2004.06.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67070853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S104620230400129X</els_id><sourcerecordid>67070853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ecf29e6f04c25b56a68bec8d76954b280a39a7a580ca972014d9f103601610183</originalsourceid><addsrcrecordid>eNp9kEFPwjAYhhujEUR_gYnZydvm13bttoMHgihLSOCA56Z030IJMGwHhn9vJyTePLVN3u_r8z6EPFJIKFD5sk5OW2xXCQNIE5AJALsifQqFiAvK4bq7pzJmwHiP3Hm_BgDKsvyW9KgQKeMZ75PJm_WmOaI7RU0d7V2zDe9Dc_DRZDqMyzJ26FtnTYtVtIgMbjYR7m3b7NFH37ZdRYvxvFzM5uN7clPrjceHyzkgn-_jxWgST2cf5Wg4jQ0Xoo3R1KxAWUNqmFgKqWW-RJNXmSxEumQ5aF7oTIscjC4yBjStipoCl6FxaJ3zAXk-7w2sX4cApzriwKV3GLCVzCCDXPAQ5OegcY33Dmu1d3ar3UlRUJ1AtVa_AlUnUIFUQWCYerqsPyy3WP3NXIyFwOs5gKHk0aJT3ljcGaysQ9OqqrH_fvADnwGAow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67070853</pqid></control><display><type>article</type><title>Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bian, Hongjin ; Hammer, Juergen</creator><creatorcontrib>Bian, Hongjin ; Hammer, Juergen</creatorcontrib><description>TEPITOPE is a prediction model that has been successfully applied to the in silico identification of T cell epitopes in the context of oncology, allergy, infectious diseases, and autoimmune diseases. Like most epitope prediction models, TEPITOPE’s underlying algorithm is based on the prediction of HLA-II peptide binding, which constitutes a major bottleneck in the natural selection of epitopes. An important step in the design of subunit vaccines is the identification of promiscuous HLA-II ligands in sets of disease-specific gene products. TEPITOPE’s user interface enables the systematic prediction of promiscuous peptide ligands for a broad range of HLA-binding specificity. We show how to apply the TEPITOPE prediction model to identify T cell epitopes, and provide both a road map and examples of its successful application.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2004.06.002</identifier><identifier>PMID: 15542373</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bioinformatics ; Computational Biology - methods ; Epitope Mapping - methods ; Epitope prediction ; Epitopes, T-Lymphocyte - immunology ; Histocompatibility Antigens Class II - immunology ; HLA Antigens - immunology ; HLA-DR ; Humans ; Peptide Fragments - genetics ; Peptide Fragments - immunology ; Predictive Value of Tests ; TEPITOPE ; Vaccine</subject><ispartof>Methods (San Diego, Calif.), 2004-12, Vol.34 (4), p.468-475</ispartof><rights>2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ecf29e6f04c25b56a68bec8d76954b280a39a7a580ca972014d9f103601610183</citedby><cites>FETCH-LOGICAL-c355t-ecf29e6f04c25b56a68bec8d76954b280a39a7a580ca972014d9f103601610183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymeth.2004.06.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15542373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bian, Hongjin</creatorcontrib><creatorcontrib>Hammer, Juergen</creatorcontrib><title>Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>TEPITOPE is a prediction model that has been successfully applied to the in silico identification of T cell epitopes in the context of oncology, allergy, infectious diseases, and autoimmune diseases. Like most epitope prediction models, TEPITOPE’s underlying algorithm is based on the prediction of HLA-II peptide binding, which constitutes a major bottleneck in the natural selection of epitopes. An important step in the design of subunit vaccines is the identification of promiscuous HLA-II ligands in sets of disease-specific gene products. TEPITOPE’s user interface enables the systematic prediction of promiscuous peptide ligands for a broad range of HLA-binding specificity. We show how to apply the TEPITOPE prediction model to identify T cell epitopes, and provide both a road map and examples of its successful application.</description><subject>Bioinformatics</subject><subject>Computational Biology - methods</subject><subject>Epitope Mapping - methods</subject><subject>Epitope prediction</subject><subject>Epitopes, T-Lymphocyte - immunology</subject><subject>Histocompatibility Antigens Class II - immunology</subject><subject>HLA Antigens - immunology</subject><subject>HLA-DR</subject><subject>Humans</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - immunology</subject><subject>Predictive Value of Tests</subject><subject>TEPITOPE</subject><subject>Vaccine</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFPwjAYhhujEUR_gYnZydvm13bttoMHgihLSOCA56Z030IJMGwHhn9vJyTePLVN3u_r8z6EPFJIKFD5sk5OW2xXCQNIE5AJALsifQqFiAvK4bq7pzJmwHiP3Hm_BgDKsvyW9KgQKeMZ75PJm_WmOaI7RU0d7V2zDe9Dc_DRZDqMyzJ26FtnTYtVtIgMbjYR7m3b7NFH37ZdRYvxvFzM5uN7clPrjceHyzkgn-_jxWgST2cf5Wg4jQ0Xoo3R1KxAWUNqmFgKqWW-RJNXmSxEumQ5aF7oTIscjC4yBjStipoCl6FxaJ3zAXk-7w2sX4cApzriwKV3GLCVzCCDXPAQ5OegcY33Dmu1d3ar3UlRUJ1AtVa_AlUnUIFUQWCYerqsPyy3WP3NXIyFwOs5gKHk0aJT3ljcGaysQ9OqqrH_fvADnwGAow</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Bian, Hongjin</creator><creator>Hammer, Juergen</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041201</creationdate><title>Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE</title><author>Bian, Hongjin ; Hammer, Juergen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ecf29e6f04c25b56a68bec8d76954b280a39a7a580ca972014d9f103601610183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bioinformatics</topic><topic>Computational Biology - methods</topic><topic>Epitope Mapping - methods</topic><topic>Epitope prediction</topic><topic>Epitopes, T-Lymphocyte - immunology</topic><topic>Histocompatibility Antigens Class II - immunology</topic><topic>HLA Antigens - immunology</topic><topic>HLA-DR</topic><topic>Humans</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - immunology</topic><topic>Predictive Value of Tests</topic><topic>TEPITOPE</topic><topic>Vaccine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Hongjin</creatorcontrib><creatorcontrib>Hammer, Juergen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Hongjin</au><au>Hammer, Juergen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>34</volume><issue>4</issue><spage>468</spage><epage>475</epage><pages>468-475</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>TEPITOPE is a prediction model that has been successfully applied to the in silico identification of T cell epitopes in the context of oncology, allergy, infectious diseases, and autoimmune diseases. Like most epitope prediction models, TEPITOPE’s underlying algorithm is based on the prediction of HLA-II peptide binding, which constitutes a major bottleneck in the natural selection of epitopes. An important step in the design of subunit vaccines is the identification of promiscuous HLA-II ligands in sets of disease-specific gene products. TEPITOPE’s user interface enables the systematic prediction of promiscuous peptide ligands for a broad range of HLA-binding specificity. We show how to apply the TEPITOPE prediction model to identify T cell epitopes, and provide both a road map and examples of its successful application.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15542373</pmid><doi>10.1016/j.ymeth.2004.06.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1046-2023
ispartof Methods (San Diego, Calif.), 2004-12, Vol.34 (4), p.468-475
issn 1046-2023
1095-9130
language eng
recordid cdi_proquest_miscellaneous_67070853
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Bioinformatics
Computational Biology - methods
Epitope Mapping - methods
Epitope prediction
Epitopes, T-Lymphocyte - immunology
Histocompatibility Antigens Class II - immunology
HLA Antigens - immunology
HLA-DR
Humans
Peptide Fragments - genetics
Peptide Fragments - immunology
Predictive Value of Tests
TEPITOPE
Vaccine
title Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20promiscuous%20HLA-II-restricted%20T%20cell%20epitopes%20with%20TEPITOPE&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Bian,%20Hongjin&rft.date=2004-12-01&rft.volume=34&rft.issue=4&rft.spage=468&rft.epage=475&rft.pages=468-475&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2004.06.002&rft_dat=%3Cproquest_cross%3E67070853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67070853&rft_id=info:pmid/15542373&rft_els_id=S104620230400129X&rfr_iscdi=true