Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE

TEPITOPE is a prediction model that has been successfully applied to the in silico identification of T cell epitopes in the context of oncology, allergy, infectious diseases, and autoimmune diseases. Like most epitope prediction models, TEPITOPE’s underlying algorithm is based on the prediction of H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2004-12, Vol.34 (4), p.468-475
Hauptverfasser: Bian, Hongjin, Hammer, Juergen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TEPITOPE is a prediction model that has been successfully applied to the in silico identification of T cell epitopes in the context of oncology, allergy, infectious diseases, and autoimmune diseases. Like most epitope prediction models, TEPITOPE’s underlying algorithm is based on the prediction of HLA-II peptide binding, which constitutes a major bottleneck in the natural selection of epitopes. An important step in the design of subunit vaccines is the identification of promiscuous HLA-II ligands in sets of disease-specific gene products. TEPITOPE’s user interface enables the systematic prediction of promiscuous peptide ligands for a broad range of HLA-binding specificity. We show how to apply the TEPITOPE prediction model to identify T cell epitopes, and provide both a road map and examples of its successful application.
ISSN:1046-2023
1095-9130
DOI:10.1016/j.ymeth.2004.06.002