Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE
TEPITOPE is a prediction model that has been successfully applied to the in silico identification of T cell epitopes in the context of oncology, allergy, infectious diseases, and autoimmune diseases. Like most epitope prediction models, TEPITOPE’s underlying algorithm is based on the prediction of H...
Gespeichert in:
Veröffentlicht in: | Methods (San Diego, Calif.) Calif.), 2004-12, Vol.34 (4), p.468-475 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TEPITOPE is a prediction model that has been successfully applied to the in silico identification of T cell epitopes in the context of oncology, allergy, infectious diseases, and autoimmune diseases. Like most epitope prediction models, TEPITOPE’s underlying algorithm is based on the prediction of HLA-II peptide binding, which constitutes a major bottleneck in the natural selection of epitopes. An important step in the design of subunit vaccines is the identification of promiscuous HLA-II ligands in sets of disease-specific gene products. TEPITOPE’s user interface enables the systematic prediction of promiscuous peptide ligands for a broad range of HLA-binding specificity. We show how to apply the TEPITOPE prediction model to identify T cell epitopes, and provide both a road map and examples of its successful application. |
---|---|
ISSN: | 1046-2023 1095-9130 |
DOI: | 10.1016/j.ymeth.2004.06.002 |