Biodynamic Response of Human Fingers in a Power Grip Subjected to a Random Vibration

Background. Knowledge of the biodynamic response (BR) of the human hand-arm system is an important part of the foundation for the measurement and assessment of hand-transmitted vibration exposure. This study investigated the BR of human fingers in a power grip subjected to a random vibration. Method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2004-08, Vol.126 (4), p.447-457
Hauptverfasser: Dong, R. G, Welcome, D. E, McDowell, T. W, Wu, J. Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Knowledge of the biodynamic response (BR) of the human hand-arm system is an important part of the foundation for the measurement and assessment of hand-transmitted vibration exposure. This study investigated the BR of human fingers in a power grip subjected to a random vibration. Method. Ten male subjects were used in the experiment. Each subject applied three coupling actions to a simulated tool handle at three different finger grip force levels. Results and Conclusions. The BR is practically independent of the hand coupling actions for frequencies at or above 100 Hz. Above 50 Hz, the BR is correlated to finger and hand sizes. Increasing the finger coupling force significantly increases the BR. Therefore, hand forces should be measured and used when assessing hand-transmitted vibration exposure. The results also show that under a constant-velocity vibration, the finger vibration power absorption at frequencies above 200 Hz is approximately twice that at frequencies below 100 Hz. This suggests that the frequency weighting specified in the current ISO 5349-1 (2001) may underestimate the high frequency effect on vibration-induced finger disorders.
ISSN:0148-0731
1528-8951
DOI:10.1115/1.1784479