Synthesis and stability of small molecule probes for Pseudomonas aeruginosa quorum sensing modulation
The human pathogen Pseudomonas aeruginosa uses N-butyryl-L-homoserine lactone (BHL) and N-(3-oxododecanyl)-L-homoserine lactone (OdDHL) as small molecule intercellular signals in a phenomenon known as quorum sensing (QS). QS modulators are effective at attenuating P. aeruginosa virulence; therefore,...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2004-11, Vol.2 (22), p.3329-3336 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The human pathogen Pseudomonas aeruginosa uses N-butyryl-L-homoserine lactone (BHL) and N-(3-oxododecanyl)-L-homoserine lactone (OdDHL) as small molecule intercellular signals in a phenomenon known as quorum sensing (QS). QS modulators are effective at attenuating P. aeruginosa virulence; therefore, they are a potential new class of antibacterial agent. The lactone in BHL and OdDHL is hydrolysed under physiological conditions. The hydrolysis proceeds at a rate faster than racemisation of the alpha-chiral centre. Non-hydrolysable, non-racemic analogues (small molecule probes) were designed and synthesised, replacing the lactone with a ketone. OdDHL analogues were found to be relatively unstable to decomposition unless they were difluorinated between the beta-keto amide. Stability studies on a non-hydrolysable, cyclohexanone analogue indicated that racemisation of the alpha-chiral centre was relatively slow. This analogue was assayed to show that the L-isomer is likely to be responsible for the QS autoinducing activity in P. aeruginosa and Serratia strain ATCC39006. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/b412802h |