Central and Peripheral Effects of RFamide-Related Peptide-3 on Luteinizing Hormone and Prolactin Secretion in Rats

Hypothalamic RFamide-related peptide-3 (RFRP-3) neurons inhibit LH secretion via a central action. A direct hypophysiotropic action on the gonadotropes has also been suggested. To assess central RFRP-3 effects on the GnRH/LH surge that induces ovulation, ovariectomized rats were subjected to an estr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2009-04, Vol.150 (4), p.1834-1840
Hauptverfasser: Anderson, Greg M, Relf, Hana-Lee, Rizwan, Mohammed Z, Evans, John J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypothalamic RFamide-related peptide-3 (RFRP-3) neurons inhibit LH secretion via a central action. A direct hypophysiotropic action on the gonadotropes has also been suggested. To assess central RFRP-3 effects on the GnRH/LH surge that induces ovulation, ovariectomized rats were subjected to an estradiol plus progesterone surge-induction protocol. Chronic infusion of RFRP-3 (2.5 or 25 ng/h, intracerebroventricularly) caused a dose-dependent 50–60% inhibition of GnRH neuronal activation (assessed by colocalization with the immediate early gene c-Fos) at the surge peak compared with vehicle-treated controls. RFRP-3 also suppressed neuronal activation in the anteroventral periventricular region, which provides stimulatory input to GnRH neurons, by 50–80% compared with control values. To test whether centrally administered RFRP-3 inhibits pulsatile GnRH/LH secretion, chronically ovariectomized, low-level estradiol-treated rats without surge induction were blood sampled every 10 min for 4 h. Bolus injection of RFRP-3 (0, 2.5, or 25 μg, intracerebroventricularly) after 1.5 h did not affect subsequent LH pulse frequency, pulse amplitude, or the mean concentrations of LH or prolactin. RFRP-3 treatment of isolated anterior pituitary cells at moderate doses of up to 10−7 m did not significantly inhibit LH release, either with or without GnRH cotreatment. These data reveal a central inhibitory effect of RFRP-3 on the hypothalamo-pituitary gonadal axis specifically during the estradiol-induced GnRH/LH surge. This effect may include actions of RFRP-3 on GnRH neurons and/or their anteroventral periventricular afferent inputs but is unlikely to involve direct inhibition of LH secretion at the level of the gonadotrope. RFRP-3 inhibition of the preovulatory LH surge may occur via actions on GnRH neurons and/or their anteroventral periventricular afferents, but not via direct gonadotropic inhibition of LH secretion.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2008-1359