A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs

Detecting, localising and counting ultrasmall particles and nanoparticles in sub- and supra-cellular compartments are of considerable current interest in basic and applied research in biomedicine, bioscience and environmental science. For particles with sufficient contrast (e.g. colloidal gold, ferr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of anatomy 2009-04, Vol.191 (2), p.153-170
Hauptverfasser: Mayhew, Terry M., Mühlfeld, Christian, Vanhecke, Dimitri, Ochs, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detecting, localising and counting ultrasmall particles and nanoparticles in sub- and supra-cellular compartments are of considerable current interest in basic and applied research in biomedicine, bioscience and environmental science. For particles with sufficient contrast (e.g. colloidal gold, ferritin, heavy metal-based nanoparticles), visualization requires the high resolutions achievable by transmission electron microscopy (TEM). Moreover, if particles can be counted, their spatial distributions can be subjected to statistical evaluation. Whatever the level of structural organisation, particle distributions can be compared between different compartments within a given structure (cell, tissue and organ) or between different sets of structures (in, say, control and experimental groups). Here, a portfolio of stereology-based methods for drawing such comparisons is presented. We recognise two main scenarios: (1) section surface localisation, in which particles, exemplified by antibody-conjugated colloidal gold particles or quantum dots, are distributed at the section surface during post-embedding immunolabelling, and (2) section volume localisation (or full section penetration), in which particles are contained within the cell or tissue prior to TEM fixation and embedding procedures. Whatever the study aim or hypothesis, the methods for quantifying particles rely on the same basic principles: (i) unbiased selection of specimens by multistage random sampling, (ii) unbiased estimation of particle number and compartment size using stereological test probes (points, lines, areas and volumes), and (iii) statistical testing of an appropriate null hypothesis. To compare different groups of cells or organs, a simple and efficient approach is to compare the observed distributions of raw particle counts by a combined contingency table and chi-squared analysis. Compartmental chi-squared values making substantial contributions to total chi-squared values help identify where the main differences between distributions reside. Distributions between compartments in, say, a given cell type, can be compared using a relative labelling index (RLI) or relative deposition index (RDI) combined with a chi-squared analysis to test whether or not particles preferentially locate in certain compartments. This approach is ideally suited to analysing particles located in volume-occupying compartments (organelles or tissue spaces) or surface-occupying compartments (membranes) and expect
ISSN:0940-9602
1618-0402
DOI:10.1016/j.aanat.2008.11.001