Cardiac Myosin-Binding Protein C Mutations and Hypertrophic Cardiomyopathy : Haploinsufficiency, Deranged Phosphorylation, and Cardiomyocyte Dysfunction

Mutations in the MYBPC3 gene, encoding cardiac myosin-binding protein C (cMyBP-C), are a frequent cause of familial hypertrophic cardiomyopathy. In the present study, we investigated whether protein composition and function of the sarcomere are altered in a homogeneous familial hypertrophic cardiomy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2009-03, Vol.119 (11), p.1473-1483
Hauptverfasser: VAN DIJK, Sabine J, DOOIJES, Dennis, VAN DER VELDEN, Jolanda, DOS REMEDIOS, Cris, MICHELS, Michelle, LAMERS, Jos M. J, WINEGRAD, Saul, SCHLOSSAREK, Saskia, CARRIER, Lucie, TEN CATE, Folkert J, STIENEN, Ger J. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutations in the MYBPC3 gene, encoding cardiac myosin-binding protein C (cMyBP-C), are a frequent cause of familial hypertrophic cardiomyopathy. In the present study, we investigated whether protein composition and function of the sarcomere are altered in a homogeneous familial hypertrophic cardiomyopathy patient group with frameshift mutations in MYBPC3 (MYBPC3(mut)). Comparisons were made between cardiac samples from MYBPC3 mutant carriers (c.2373dupG, n=7; c.2864_2865delCT, n=4) and nonfailing donors (n=13). Western blots with the use of antibodies directed against cMyBP-C did not reveal truncated cMyBP-C in MYBPC3(mut). Protein expression of cMyBP-C was significantly reduced in MYBPC3(mut) by 33+/-5%. Cardiac MyBP-C phosphorylation in MYBPC3(mut) samples was similar to the values in donor samples, whereas the phosphorylation status of cardiac troponin I was reduced by 84+/-5%, indicating divergent phosphorylation of the 2 main contractile target proteins of the beta-adrenergic pathway. Force measurements in mechanically isolated Triton-permeabilized cardiomyocytes demonstrated a decrease in maximal force per cross-sectional area of the myocytes in MYBPC3(mut) (20.2+/-2.7 kN/m(2)) compared with donor (34.5+/-1.1 kN/m(2)). Moreover, Ca(2+) sensitivity was higher in MYBPC3(mut) (pCa(50)=5.62+/-0.04) than in donor (pCa(50)=5.54+/-0.02), consistent with reduced cardiac troponin I phosphorylation. Treatment with exogenous protein kinase A, to mimic beta-adrenergic stimulation, did not correct reduced maximal force but abolished the initial difference in Ca(2+) sensitivity between MYBPC3(mut) (pCa(50)=5.46+/-0.03) and donor (pCa(50)=5.48+/-0.02). Frameshift MYBPC3 mutations cause haploinsufficiency, deranged phosphorylation of contractile proteins, and reduced maximal force-generating capacity of cardiomyocytes. The enhanced Ca(2+) sensitivity in MYBPC3(mut) is due to hypophosphorylation of troponin I secondary to mutation-induced dysfunction.
ISSN:0009-7322
1524-4539
DOI:10.1161/CIRCULATIONAHA.108.838672