Tracking by Parts: A Bayesian Approach With Component Collaboration

Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2009-04, Vol.39 (2), p.375-388
Hauptverfasser: Chang, Wen-Yan, Chen, Chu-Song, Hung, Yi-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 2
container_start_page 375
container_title IEEE transactions on cybernetics
container_volume 39
creator Chang, Wen-Yan
Chen, Chu-Song
Hung, Yi-Ping
description Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation framework by encoding the spatial coherence in a Bayesian formulation. To resolve this formulation, a TBP particle-filtering method is introduced. Unlike existing methods that only use the spatial-coherence relationship for particle-weight estimation, our method further applies this relationship for state prediction based on system dynamics. Thus, the part-based information can be utilized efficiently, and the tracking performance can be improved. Experimental results show that our approach outperforms the factored-likelihood and particle reweight methods, which only use spatial coherence for weight estimation.
doi_str_mv 10.1109/TSMCB.2008.2005417
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_67050730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4717256</ieee_id><sourcerecordid>869849079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-89c893b5c544ad47b222df68cdd1af1e3daafa42e15cc19bec28aa7fef71f37f3</originalsourceid><addsrcrecordid>eNp9kUtPwzAMxyMEYuPxBUBCFQc4deTVJuG2VbykIZAY4hilacI6trYk7WHfnoxVIHHAB9uSf7Zs_wE4QXCEEBRXs5fHbDLCEPKNSyhiO2CIBEUxpALvhhxyElOKxAAceL-AEAoo2D4YoBCTYEOQzZzSH2X1HuXr6Fm51l9H42ii1saXqorGTeNqpefRW9nOo6xeNXVlqjZky6XKa6fasq6OwJ5VS2-O-3gIXm9vZtl9PH26e8jG01hTTNuYC80FyROdUKoKynKMcWFTrosCKYsMKZSyimKDEq2RyI3GXClmjWXIEmbJIbjczg07fXbGt3JVem3CJpWpOy95KjgVkIlAXvxLpgwmkBEYwPM_4KLuXBWukDxhlBCcsgDhLaRd7b0zVjauXCm3lgjKjRLyWwm5UUL2SoSms35yl69M8dvSvz4Ap1ugNMb8lClDDCcp-QJ9OYxR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857433267</pqid></control><display><type>article</type><title>Tracking by Parts: A Bayesian Approach With Component Collaboration</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, Wen-Yan ; Chen, Chu-Song ; Hung, Yi-Ping</creator><creatorcontrib>Chang, Wen-Yan ; Chen, Chu-Song ; Hung, Yi-Ping</creatorcontrib><description>Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation framework by encoding the spatial coherence in a Bayesian formulation. To resolve this formulation, a TBP particle-filtering method is introduced. Unlike existing methods that only use the spatial-coherence relationship for particle-weight estimation, our method further applies this relationship for state prediction based on system dynamics. Thus, the part-based information can be utilized efficiently, and the tracking performance can be improved. Experimental results show that our approach outperforms the factored-likelihood and particle reweight methods, which only use spatial coherence for weight estimation.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2008.2005417</identifier><identifier>PMID: 19095555</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayesian analysis ; Bayesian methods ; Coherence ; Collaboration ; Component collaboration ; Computer science ; contrast histogram ; Cybernetics ; Filtering ; Formulations ; Histograms ; Information science ; particle filtering ; Particle tracking ; Principal component analysis ; Spatial coherence ; System dynamics ; Target tracking ; Tasks ; Tracking ; tracking by parts (TBP) ; Visual ; visual tracking</subject><ispartof>IEEE transactions on cybernetics, 2009-04, Vol.39 (2), p.375-388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-89c893b5c544ad47b222df68cdd1af1e3daafa42e15cc19bec28aa7fef71f37f3</citedby><cites>FETCH-LOGICAL-c424t-89c893b5c544ad47b222df68cdd1af1e3daafa42e15cc19bec28aa7fef71f37f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4717256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4717256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19095555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Wen-Yan</creatorcontrib><creatorcontrib>Chen, Chu-Song</creatorcontrib><creatorcontrib>Hung, Yi-Ping</creatorcontrib><title>Tracking by Parts: A Bayesian Approach With Component Collaboration</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation framework by encoding the spatial coherence in a Bayesian formulation. To resolve this formulation, a TBP particle-filtering method is introduced. Unlike existing methods that only use the spatial-coherence relationship for particle-weight estimation, our method further applies this relationship for state prediction based on system dynamics. Thus, the part-based information can be utilized efficiently, and the tracking performance can be improved. Experimental results show that our approach outperforms the factored-likelihood and particle reweight methods, which only use spatial coherence for weight estimation.</description><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Coherence</subject><subject>Collaboration</subject><subject>Component collaboration</subject><subject>Computer science</subject><subject>contrast histogram</subject><subject>Cybernetics</subject><subject>Filtering</subject><subject>Formulations</subject><subject>Histograms</subject><subject>Information science</subject><subject>particle filtering</subject><subject>Particle tracking</subject><subject>Principal component analysis</subject><subject>Spatial coherence</subject><subject>System dynamics</subject><subject>Target tracking</subject><subject>Tasks</subject><subject>Tracking</subject><subject>tracking by parts (TBP)</subject><subject>Visual</subject><subject>visual tracking</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtPwzAMxyMEYuPxBUBCFQc4deTVJuG2VbykIZAY4hilacI6trYk7WHfnoxVIHHAB9uSf7Zs_wE4QXCEEBRXs5fHbDLCEPKNSyhiO2CIBEUxpALvhhxyElOKxAAceL-AEAoo2D4YoBCTYEOQzZzSH2X1HuXr6Fm51l9H42ii1saXqorGTeNqpefRW9nOo6xeNXVlqjZky6XKa6fasq6OwJ5VS2-O-3gIXm9vZtl9PH26e8jG01hTTNuYC80FyROdUKoKynKMcWFTrosCKYsMKZSyimKDEq2RyI3GXClmjWXIEmbJIbjczg07fXbGt3JVem3CJpWpOy95KjgVkIlAXvxLpgwmkBEYwPM_4KLuXBWukDxhlBCcsgDhLaRd7b0zVjauXCm3lgjKjRLyWwm5UUL2SoSms35yl69M8dvSvz4Ap1ugNMb8lClDDCcp-QJ9OYxR</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Chang, Wen-Yan</creator><creator>Chen, Chu-Song</creator><creator>Hung, Yi-Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Tracking by Parts: A Bayesian Approach With Component Collaboration</title><author>Chang, Wen-Yan ; Chen, Chu-Song ; Hung, Yi-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-89c893b5c544ad47b222df68cdd1af1e3daafa42e15cc19bec28aa7fef71f37f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Coherence</topic><topic>Collaboration</topic><topic>Component collaboration</topic><topic>Computer science</topic><topic>contrast histogram</topic><topic>Cybernetics</topic><topic>Filtering</topic><topic>Formulations</topic><topic>Histograms</topic><topic>Information science</topic><topic>particle filtering</topic><topic>Particle tracking</topic><topic>Principal component analysis</topic><topic>Spatial coherence</topic><topic>System dynamics</topic><topic>Target tracking</topic><topic>Tasks</topic><topic>Tracking</topic><topic>tracking by parts (TBP)</topic><topic>Visual</topic><topic>visual tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Wen-Yan</creatorcontrib><creatorcontrib>Chen, Chu-Song</creatorcontrib><creatorcontrib>Hung, Yi-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, Wen-Yan</au><au>Chen, Chu-Song</au><au>Hung, Yi-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking by Parts: A Bayesian Approach With Component Collaboration</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>39</volume><issue>2</issue><spage>375</spage><epage>388</epage><pages>375-388</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation framework by encoding the spatial coherence in a Bayesian formulation. To resolve this formulation, a TBP particle-filtering method is introduced. Unlike existing methods that only use the spatial-coherence relationship for particle-weight estimation, our method further applies this relationship for state prediction based on system dynamics. Thus, the part-based information can be utilized efficiently, and the tracking performance can be improved. Experimental results show that our approach outperforms the factored-likelihood and particle reweight methods, which only use spatial coherence for weight estimation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19095555</pmid><doi>10.1109/TSMCB.2008.2005417</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2009-04, Vol.39 (2), p.375-388
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_proquest_miscellaneous_67050730
source IEEE Electronic Library (IEL)
subjects Bayesian analysis
Bayesian methods
Coherence
Collaboration
Component collaboration
Computer science
contrast histogram
Cybernetics
Filtering
Formulations
Histograms
Information science
particle filtering
Particle tracking
Principal component analysis
Spatial coherence
System dynamics
Target tracking
Tasks
Tracking
tracking by parts (TBP)
Visual
visual tracking
title Tracking by Parts: A Bayesian Approach With Component Collaboration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20by%20Parts:%20A%20Bayesian%20Approach%20With%20Component%20Collaboration&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Chang,%20Wen-Yan&rft.date=2009-04-01&rft.volume=39&rft.issue=2&rft.spage=375&rft.epage=388&rft.pages=375-388&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2008.2005417&rft_dat=%3Cproquest_RIE%3E869849079%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857433267&rft_id=info:pmid/19095555&rft_ieee_id=4717256&rfr_iscdi=true