Tracking by Parts: A Bayesian Approach With Component Collaboration
Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation fr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2009-04, Vol.39 (2), p.375-388 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 2 |
container_start_page | 375 |
container_title | IEEE transactions on cybernetics |
container_volume | 39 |
creator | Chang, Wen-Yan Chen, Chu-Song Hung, Yi-Ping |
description | Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation framework by encoding the spatial coherence in a Bayesian formulation. To resolve this formulation, a TBP particle-filtering method is introduced. Unlike existing methods that only use the spatial-coherence relationship for particle-weight estimation, our method further applies this relationship for state prediction based on system dynamics. Thus, the part-based information can be utilized efficiently, and the tracking performance can be improved. Experimental results show that our approach outperforms the factored-likelihood and particle reweight methods, which only use spatial coherence for weight estimation. |
doi_str_mv | 10.1109/TSMCB.2008.2005417 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_67050730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4717256</ieee_id><sourcerecordid>869849079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-89c893b5c544ad47b222df68cdd1af1e3daafa42e15cc19bec28aa7fef71f37f3</originalsourceid><addsrcrecordid>eNp9kUtPwzAMxyMEYuPxBUBCFQc4deTVJuG2VbykIZAY4hilacI6trYk7WHfnoxVIHHAB9uSf7Zs_wE4QXCEEBRXs5fHbDLCEPKNSyhiO2CIBEUxpALvhhxyElOKxAAceL-AEAoo2D4YoBCTYEOQzZzSH2X1HuXr6Fm51l9H42ii1saXqorGTeNqpefRW9nOo6xeNXVlqjZky6XKa6fasq6OwJ5VS2-O-3gIXm9vZtl9PH26e8jG01hTTNuYC80FyROdUKoKynKMcWFTrosCKYsMKZSyimKDEq2RyI3GXClmjWXIEmbJIbjczg07fXbGt3JVem3CJpWpOy95KjgVkIlAXvxLpgwmkBEYwPM_4KLuXBWukDxhlBCcsgDhLaRd7b0zVjauXCm3lgjKjRLyWwm5UUL2SoSms35yl69M8dvSvz4Ap1ugNMb8lClDDCcp-QJ9OYxR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857433267</pqid></control><display><type>article</type><title>Tracking by Parts: A Bayesian Approach With Component Collaboration</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, Wen-Yan ; Chen, Chu-Song ; Hung, Yi-Ping</creator><creatorcontrib>Chang, Wen-Yan ; Chen, Chu-Song ; Hung, Yi-Ping</creatorcontrib><description>Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation framework by encoding the spatial coherence in a Bayesian formulation. To resolve this formulation, a TBP particle-filtering method is introduced. Unlike existing methods that only use the spatial-coherence relationship for particle-weight estimation, our method further applies this relationship for state prediction based on system dynamics. Thus, the part-based information can be utilized efficiently, and the tracking performance can be improved. Experimental results show that our approach outperforms the factored-likelihood and particle reweight methods, which only use spatial coherence for weight estimation.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2008.2005417</identifier><identifier>PMID: 19095555</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayesian analysis ; Bayesian methods ; Coherence ; Collaboration ; Component collaboration ; Computer science ; contrast histogram ; Cybernetics ; Filtering ; Formulations ; Histograms ; Information science ; particle filtering ; Particle tracking ; Principal component analysis ; Spatial coherence ; System dynamics ; Target tracking ; Tasks ; Tracking ; tracking by parts (TBP) ; Visual ; visual tracking</subject><ispartof>IEEE transactions on cybernetics, 2009-04, Vol.39 (2), p.375-388</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-89c893b5c544ad47b222df68cdd1af1e3daafa42e15cc19bec28aa7fef71f37f3</citedby><cites>FETCH-LOGICAL-c424t-89c893b5c544ad47b222df68cdd1af1e3daafa42e15cc19bec28aa7fef71f37f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4717256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4717256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19095555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Wen-Yan</creatorcontrib><creatorcontrib>Chen, Chu-Song</creatorcontrib><creatorcontrib>Hung, Yi-Ping</creatorcontrib><title>Tracking by Parts: A Bayesian Approach With Component Collaboration</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation framework by encoding the spatial coherence in a Bayesian formulation. To resolve this formulation, a TBP particle-filtering method is introduced. Unlike existing methods that only use the spatial-coherence relationship for particle-weight estimation, our method further applies this relationship for state prediction based on system dynamics. Thus, the part-based information can be utilized efficiently, and the tracking performance can be improved. Experimental results show that our approach outperforms the factored-likelihood and particle reweight methods, which only use spatial coherence for weight estimation.</description><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Coherence</subject><subject>Collaboration</subject><subject>Component collaboration</subject><subject>Computer science</subject><subject>contrast histogram</subject><subject>Cybernetics</subject><subject>Filtering</subject><subject>Formulations</subject><subject>Histograms</subject><subject>Information science</subject><subject>particle filtering</subject><subject>Particle tracking</subject><subject>Principal component analysis</subject><subject>Spatial coherence</subject><subject>System dynamics</subject><subject>Target tracking</subject><subject>Tasks</subject><subject>Tracking</subject><subject>tracking by parts (TBP)</subject><subject>Visual</subject><subject>visual tracking</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtPwzAMxyMEYuPxBUBCFQc4deTVJuG2VbykIZAY4hilacI6trYk7WHfnoxVIHHAB9uSf7Zs_wE4QXCEEBRXs5fHbDLCEPKNSyhiO2CIBEUxpALvhhxyElOKxAAceL-AEAoo2D4YoBCTYEOQzZzSH2X1HuXr6Fm51l9H42ii1saXqorGTeNqpefRW9nOo6xeNXVlqjZky6XKa6fasq6OwJ5VS2-O-3gIXm9vZtl9PH26e8jG01hTTNuYC80FyROdUKoKynKMcWFTrosCKYsMKZSyimKDEq2RyI3GXClmjWXIEmbJIbjczg07fXbGt3JVem3CJpWpOy95KjgVkIlAXvxLpgwmkBEYwPM_4KLuXBWukDxhlBCcsgDhLaRd7b0zVjauXCm3lgjKjRLyWwm5UUL2SoSms35yl69M8dvSvz4Ap1ugNMb8lClDDCcp-QJ9OYxR</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Chang, Wen-Yan</creator><creator>Chen, Chu-Song</creator><creator>Hung, Yi-Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Tracking by Parts: A Bayesian Approach With Component Collaboration</title><author>Chang, Wen-Yan ; Chen, Chu-Song ; Hung, Yi-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-89c893b5c544ad47b222df68cdd1af1e3daafa42e15cc19bec28aa7fef71f37f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Coherence</topic><topic>Collaboration</topic><topic>Component collaboration</topic><topic>Computer science</topic><topic>contrast histogram</topic><topic>Cybernetics</topic><topic>Filtering</topic><topic>Formulations</topic><topic>Histograms</topic><topic>Information science</topic><topic>particle filtering</topic><topic>Particle tracking</topic><topic>Principal component analysis</topic><topic>Spatial coherence</topic><topic>System dynamics</topic><topic>Target tracking</topic><topic>Tasks</topic><topic>Tracking</topic><topic>tracking by parts (TBP)</topic><topic>Visual</topic><topic>visual tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Wen-Yan</creatorcontrib><creatorcontrib>Chen, Chu-Song</creatorcontrib><creatorcontrib>Hung, Yi-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, Wen-Yan</au><au>Chen, Chu-Song</au><au>Hung, Yi-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking by Parts: A Bayesian Approach With Component Collaboration</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>39</volume><issue>2</issue><spage>375</spage><epage>388</epage><pages>375-388</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation framework by encoding the spatial coherence in a Bayesian formulation. To resolve this formulation, a TBP particle-filtering method is introduced. Unlike existing methods that only use the spatial-coherence relationship for particle-weight estimation, our method further applies this relationship for state prediction based on system dynamics. Thus, the part-based information can be utilized efficiently, and the tracking performance can be improved. Experimental results show that our approach outperforms the factored-likelihood and particle reweight methods, which only use spatial coherence for weight estimation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19095555</pmid><doi>10.1109/TSMCB.2008.2005417</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4419 |
ispartof | IEEE transactions on cybernetics, 2009-04, Vol.39 (2), p.375-388 |
issn | 1083-4419 2168-2267 1941-0492 2168-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_67050730 |
source | IEEE Electronic Library (IEL) |
subjects | Bayesian analysis Bayesian methods Coherence Collaboration Component collaboration Computer science contrast histogram Cybernetics Filtering Formulations Histograms Information science particle filtering Particle tracking Principal component analysis Spatial coherence System dynamics Target tracking Tasks Tracking tracking by parts (TBP) Visual visual tracking |
title | Tracking by Parts: A Bayesian Approach With Component Collaboration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20by%20Parts:%20A%20Bayesian%20Approach%20With%20Component%20Collaboration&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Chang,%20Wen-Yan&rft.date=2009-04-01&rft.volume=39&rft.issue=2&rft.spage=375&rft.epage=388&rft.pages=375-388&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2008.2005417&rft_dat=%3Cproquest_RIE%3E869849079%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857433267&rft_id=info:pmid/19095555&rft_ieee_id=4717256&rfr_iscdi=true |