Tracking by Parts: A Bayesian Approach With Component Collaboration
Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation fr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2009-04, Vol.39 (2), p.375-388 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Instead of using global-appearance information for visual tracking, as adopted by many methods, we propose a tracking-by-parts (TBP) approach that uses partial appearance information for the task. The proposed method considers the collaborations between parts and derives a probability propagation framework by encoding the spatial coherence in a Bayesian formulation. To resolve this formulation, a TBP particle-filtering method is introduced. Unlike existing methods that only use the spatial-coherence relationship for particle-weight estimation, our method further applies this relationship for state prediction based on system dynamics. Thus, the part-based information can be utilized efficiently, and the tracking performance can be improved. Experimental results show that our approach outperforms the factored-likelihood and particle reweight methods, which only use spatial coherence for weight estimation. |
---|---|
ISSN: | 1083-4419 2168-2267 1941-0492 2168-2275 |
DOI: | 10.1109/TSMCB.2008.2005417 |