How does the brain accommodate to increased task difficulty in word finding? A functional MRI study

In functional imaging of the brain, the difficulty of a task may be critical for the pattern of activation. Increased task difficulty could lead to increased activation in task-specific regions or to activation of additional, "compensatory" regions. A previous study with functional transcr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2004-11, Vol.23 (3), p.1152-1160
Hauptverfasser: Dräger, B, Jansen, A, Bruchmann, S, Förster, A F, Pleger, B, Zwitserlood, P', Knecht, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In functional imaging of the brain, the difficulty of a task may be critical for the pattern of activation. Increased task difficulty could lead to increased activation in task-specific regions or to activation of additional, "compensatory" regions. A previous study with functional transcranial Doppler sonography (fTCD) showed no evidence that increased difficulty in word retrieval leads to a recruitment of areas homologous to language-related regions. The question remains how the brain accommodates increasing task difficulty. Because of limitations of fTCD method, we used functional magnetic resonance imaging (fMRI) in this study. We manipulated word retrieval difficulty in healthy subjects (n = 14) to determine whether the classical language-related brain regions are activated with increasing difficulty in word retrieval. fMRI demonstrated that with increased task difficulty (I) the lateralization of language-associated brain activation remained constant, (II) no additional activation of language-related regions of the dominant hemisphere, nor of homologous regions of the subdominant hemisphere, was evident, (III) additional activation was found in right posterior parietal cortex--typically associated with sustained attention and executive control. Thus, increased difficulty in word retrieval leads to coactivation of distinct brain areas, working together in a large cognitive network, rather than to increased activation of typically language-related areas.
ISSN:1053-8119
DOI:10.1016/S1053-8119(04)00370-2