Study of Protein–Probe Interaction and Protective Action of Surfactant Sodium Dodecyl Sulphate in Urea-Denatured HSA using Charge Transfer Fluorescence Probe Methyl Ester of N,N-Dimethylamino Naphthyl Acrylic Acid
We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of N , N -dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA an...
Gespeichert in:
Veröffentlicht in: | Journal of fluorescence 2009-03, Vol.19 (2), p.291-302 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of
N
,
N
-dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA and spectral modulation thereupon. The extent of binding and free energy change for complexation reaction along with efficient fluorescence resonance energy transfer from Trp-214 of HSA to MDMANA indicates strong binding between probe and protein. Fluorescence anisotropy, red edge excitation shift, acrylamide quenching and time resolved measurements corroborate the binding nature of the probe with protein and predicts that the probe molecule is located at the hydrophobic site of the protein HSA. Due to the strong binding ability of MDMANA with HSA, it is successfully utilized for the study of stabilizing action of anionic surfactant Sodium Dodecyl Sulphate to the unfolding and folding of protein with denaturant urea in concentration range 1M to 9M. |
---|---|
ISSN: | 1053-0509 1573-4994 |
DOI: | 10.1007/s10895-008-0415-1 |