A complex way to compute fMRI activation
In functional magnetic resonance imaging, voxel time courses after Fourier or non-Fourier “image reconstruction” are complex valued as a result of phase imperfections due to magnetic field inhomogeneities. Nearly all fMRI studies derive functional “activation” based on magnitude voxel time courses [...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2004-11, Vol.23 (3), p.1078-1092 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1092 |
---|---|
container_issue | 3 |
container_start_page | 1078 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 23 |
creator | Rowe, Daniel B. Logan, Brent R. |
description | In functional magnetic resonance imaging, voxel time courses after Fourier or non-Fourier “image reconstruction” are complex valued as a result of phase imperfections due to magnetic field inhomogeneities. Nearly all fMRI studies derive functional “activation” based on magnitude voxel time courses [Bandettini, P., Jesmanowicz, A., Wong, E., Hyde, J.S., 1993. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30 (2): 161-173 and Cox, R.W., Jesmanowicz, A., Hyde, J.S., 1995. Real-time functional magnetic resonance imaging. Magn. Reson. Med. 33 (2): 230-236]. Here, we propose to directly model the entire complex or bivariate data rather than just the magnitude-only data. A nonlinear multiple regression model is used to model activation of the complex signal, and a likelihood ratio test is derived to determine activation in each voxel. We investigate the performance of the model on a real dataset, then compare the magnitude-only and complex models under varying signal-to-noise ratios in a simulation study with varying activation contrast effects. |
doi_str_mv | 10.1016/j.neuroimage.2004.06.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67043108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811904004069</els_id><sourcerecordid>67043108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-56a0e441ecd52dff9bde3885f237b86352f2f480eb4c4acfec10c01549c44c8c3</originalsourceid><addsrcrecordid>eNqFkN9LwzAQx4Mobk7_BSkI4kvrJU269HEOfwwmguhzaNOLtGzNTNrp_nszNxj44tPdwefuvnwIiSgkFGh22yQt9s7Wy-IDEwbAE8gS4OyIDCnkIs7FmB1ve5HGktJ8QM68bwAgp1yekgEVgkkKckhuJpG2y9UCv6OvYhN19nfsO4zM8-ssKnRXr4uutu05OTHFwuPFvo7I-8P92_Qpnr88zqaTeazTXHaxyApAzinqSrDKmLysMJVSGJaOS5mlghlmuAQsueaFNqgpaKCC55pzLXU6Ite7uytnP3v0nVrWXuNiUbRoe6-yMfA0RA_g1R-wsb1rQzZFBYwZF5LRQMkdpZ313qFRKxe0uY2ioLYuVaMOLtXWpYJMBZdh9XL_oC-XWB0W9_ICcLcDMPhY1-iU1zW2Gqvaoe5UZev_v_wAu1SImA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507245821</pqid></control><display><type>article</type><title>A complex way to compute fMRI activation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Rowe, Daniel B. ; Logan, Brent R.</creator><creatorcontrib>Rowe, Daniel B. ; Logan, Brent R.</creatorcontrib><description>In functional magnetic resonance imaging, voxel time courses after Fourier or non-Fourier “image reconstruction” are complex valued as a result of phase imperfections due to magnetic field inhomogeneities. Nearly all fMRI studies derive functional “activation” based on magnitude voxel time courses [Bandettini, P., Jesmanowicz, A., Wong, E., Hyde, J.S., 1993. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30 (2): 161-173 and Cox, R.W., Jesmanowicz, A., Hyde, J.S., 1995. Real-time functional magnetic resonance imaging. Magn. Reson. Med. 33 (2): 230-236]. Here, we propose to directly model the entire complex or bivariate data rather than just the magnitude-only data. A nonlinear multiple regression model is used to model activation of the complex signal, and a likelihood ratio test is derived to determine activation in each voxel. We investigate the performance of the model on a real dataset, then compare the magnitude-only and complex models under varying signal-to-noise ratios in a simulation study with varying activation contrast effects.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2004.06.042</identifier><identifier>PMID: 15528108</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Brain Mapping ; Derivatives ; Efferent Pathways - physiology ; Fingers - physiology ; Fourier Analysis ; Fourier transforms ; Functional magnetic resonance imaging ; Humans ; Hypotheses ; Hypothesis testing ; Image Processing, Computer-Assisted - statistics & numerical data ; Likelihood Functions ; Magnetic field inhomogeneities ; Magnetic Resonance Imaging - statistics & numerical data ; Models, Statistical ; Motor Cortex - physiology ; Noise ; Nonlinear Dynamics ; Voxel time courses</subject><ispartof>NeuroImage (Orlando, Fla.), 2004-11, Vol.23 (3), p.1078-1092</ispartof><rights>2004 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Nov 1, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-56a0e441ecd52dff9bde3885f237b86352f2f480eb4c4acfec10c01549c44c8c3</citedby><cites>FETCH-LOGICAL-c398t-56a0e441ecd52dff9bde3885f237b86352f2f480eb4c4acfec10c01549c44c8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811904004069$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15528108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowe, Daniel B.</creatorcontrib><creatorcontrib>Logan, Brent R.</creatorcontrib><title>A complex way to compute fMRI activation</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>In functional magnetic resonance imaging, voxel time courses after Fourier or non-Fourier “image reconstruction” are complex valued as a result of phase imperfections due to magnetic field inhomogeneities. Nearly all fMRI studies derive functional “activation” based on magnitude voxel time courses [Bandettini, P., Jesmanowicz, A., Wong, E., Hyde, J.S., 1993. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30 (2): 161-173 and Cox, R.W., Jesmanowicz, A., Hyde, J.S., 1995. Real-time functional magnetic resonance imaging. Magn. Reson. Med. 33 (2): 230-236]. Here, we propose to directly model the entire complex or bivariate data rather than just the magnitude-only data. A nonlinear multiple regression model is used to model activation of the complex signal, and a likelihood ratio test is derived to determine activation in each voxel. We investigate the performance of the model on a real dataset, then compare the magnitude-only and complex models under varying signal-to-noise ratios in a simulation study with varying activation contrast effects.</description><subject>Algorithms</subject><subject>Brain Mapping</subject><subject>Derivatives</subject><subject>Efferent Pathways - physiology</subject><subject>Fingers - physiology</subject><subject>Fourier Analysis</subject><subject>Fourier transforms</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Likelihood Functions</subject><subject>Magnetic field inhomogeneities</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Models, Statistical</subject><subject>Motor Cortex - physiology</subject><subject>Noise</subject><subject>Nonlinear Dynamics</subject><subject>Voxel time courses</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkN9LwzAQx4Mobk7_BSkI4kvrJU269HEOfwwmguhzaNOLtGzNTNrp_nszNxj44tPdwefuvnwIiSgkFGh22yQt9s7Wy-IDEwbAE8gS4OyIDCnkIs7FmB1ve5HGktJ8QM68bwAgp1yekgEVgkkKckhuJpG2y9UCv6OvYhN19nfsO4zM8-ssKnRXr4uutu05OTHFwuPFvo7I-8P92_Qpnr88zqaTeazTXHaxyApAzinqSrDKmLysMJVSGJaOS5mlghlmuAQsueaFNqgpaKCC55pzLXU6Ite7uytnP3v0nVrWXuNiUbRoe6-yMfA0RA_g1R-wsb1rQzZFBYwZF5LRQMkdpZ313qFRKxe0uY2ioLYuVaMOLtXWpYJMBZdh9XL_oC-XWB0W9_ICcLcDMPhY1-iU1zW2Gqvaoe5UZev_v_wAu1SImA</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Rowe, Daniel B.</creator><creator>Logan, Brent R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20041101</creationdate><title>A complex way to compute fMRI activation</title><author>Rowe, Daniel B. ; Logan, Brent R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-56a0e441ecd52dff9bde3885f237b86352f2f480eb4c4acfec10c01549c44c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Brain Mapping</topic><topic>Derivatives</topic><topic>Efferent Pathways - physiology</topic><topic>Fingers - physiology</topic><topic>Fourier Analysis</topic><topic>Fourier transforms</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Likelihood Functions</topic><topic>Magnetic field inhomogeneities</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Models, Statistical</topic><topic>Motor Cortex - physiology</topic><topic>Noise</topic><topic>Nonlinear Dynamics</topic><topic>Voxel time courses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowe, Daniel B.</creatorcontrib><creatorcontrib>Logan, Brent R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowe, Daniel B.</au><au>Logan, Brent R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A complex way to compute fMRI activation</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004-11-01</date><risdate>2004</risdate><volume>23</volume><issue>3</issue><spage>1078</spage><epage>1092</epage><pages>1078-1092</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>In functional magnetic resonance imaging, voxel time courses after Fourier or non-Fourier “image reconstruction” are complex valued as a result of phase imperfections due to magnetic field inhomogeneities. Nearly all fMRI studies derive functional “activation” based on magnitude voxel time courses [Bandettini, P., Jesmanowicz, A., Wong, E., Hyde, J.S., 1993. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30 (2): 161-173 and Cox, R.W., Jesmanowicz, A., Hyde, J.S., 1995. Real-time functional magnetic resonance imaging. Magn. Reson. Med. 33 (2): 230-236]. Here, we propose to directly model the entire complex or bivariate data rather than just the magnitude-only data. A nonlinear multiple regression model is used to model activation of the complex signal, and a likelihood ratio test is derived to determine activation in each voxel. We investigate the performance of the model on a real dataset, then compare the magnitude-only and complex models under varying signal-to-noise ratios in a simulation study with varying activation contrast effects.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15528108</pmid><doi>10.1016/j.neuroimage.2004.06.042</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2004-11, Vol.23 (3), p.1078-1092 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_67043108 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Brain Mapping Derivatives Efferent Pathways - physiology Fingers - physiology Fourier Analysis Fourier transforms Functional magnetic resonance imaging Humans Hypotheses Hypothesis testing Image Processing, Computer-Assisted - statistics & numerical data Likelihood Functions Magnetic field inhomogeneities Magnetic Resonance Imaging - statistics & numerical data Models, Statistical Motor Cortex - physiology Noise Nonlinear Dynamics Voxel time courses |
title | A complex way to compute fMRI activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20complex%20way%20to%20compute%20fMRI%20activation&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Rowe,%20Daniel%20B.&rft.date=2004-11-01&rft.volume=23&rft.issue=3&rft.spage=1078&rft.epage=1092&rft.pages=1078-1092&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2004.06.042&rft_dat=%3Cproquest_cross%3E67043108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507245821&rft_id=info:pmid/15528108&rft_els_id=S1053811904004069&rfr_iscdi=true |