A complex way to compute fMRI activation
In functional magnetic resonance imaging, voxel time courses after Fourier or non-Fourier “image reconstruction” are complex valued as a result of phase imperfections due to magnetic field inhomogeneities. Nearly all fMRI studies derive functional “activation” based on magnitude voxel time courses [...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2004-11, Vol.23 (3), p.1078-1092 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In functional magnetic resonance imaging, voxel time courses after Fourier or non-Fourier “image reconstruction” are complex valued as a result of phase imperfections due to magnetic field inhomogeneities. Nearly all fMRI studies derive functional “activation” based on magnitude voxel time courses [Bandettini, P., Jesmanowicz, A., Wong, E., Hyde, J.S., 1993. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30 (2): 161-173 and Cox, R.W., Jesmanowicz, A., Hyde, J.S., 1995. Real-time functional magnetic resonance imaging. Magn. Reson. Med. 33 (2): 230-236]. Here, we propose to directly model the entire complex or bivariate data rather than just the magnitude-only data. A nonlinear multiple regression model is used to model activation of the complex signal, and a likelihood ratio test is derived to determine activation in each voxel. We investigate the performance of the model on a real dataset, then compare the magnitude-only and complex models under varying signal-to-noise ratios in a simulation study with varying activation contrast effects. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2004.06.042 |