Synthesis, Self-Assembly, and Characterization of Supramolecular Polymers from Electroactive Dendron Rodcoil Molecules
We report here the synthesis and self-assembly of a series of three molecules with dendron rodcoil architecture that contain conjugated segments of oligo(thiophene), oligo(phenylene-vinylene), and oligo(phenylene). Despite their structural differences, all three molecules yield similar self-assemble...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2004-11, Vol.126 (44), p.14452-14458 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report here the synthesis and self-assembly of a series of three molecules with dendron rodcoil architecture that contain conjugated segments of oligo(thiophene), oligo(phenylene-vinylene), and oligo(phenylene). Despite their structural differences, all three molecules yield similar self-assembled structures. Electron and atomic force microscopy reveals the self-assembly of the molecules into high aspect ratio ribbon-like nanostructures which at low concentrations induce gelation in nonpolar solvent. Self-assembly results in a blue-shifted absorption spectrum and a red-shifted, quenched fluorescence spectrum, indicating aggregation of the conjugated segments within the ribbon-like structures. The assembly of these molecules into one-dimensional nanostructures is a route to π−π stacked supramolecular polymers for organic electronic functions. In the oligo(thiophene) derivative, self-assembly leads to a 3 orders of magnitude increase in the conductivity of iodine-doped films due to self-assembly. We also found that electric field alignment of these supramolecular assemblies can be used to create arrays of self-assembled nanowires on a device substrate. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja049325w |