3D real time methodology monitoring cement failures in THA
The present work proposed a methodology to monitor cement microcrack formation in the cemented femoral stem construct using the acoustic emission technique. This technique provides a unique means to automatically tally the number of microcracks, to visualize microcrack distribution, and to animate t...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research 2004-12, Vol.71A (3), p.391-402 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present work proposed a methodology to monitor cement microcrack formation in the cemented femoral stem construct using the acoustic emission technique. This technique provides a unique means to automatically tally the number of microcracks, to visualize microcrack distribution, and to animate the progress of crack formation in a given time window of a fatigue test. In this work, the formulation of microcrack source location was derived and a computer program was developed specifically for the proposed application. The program was validated using computer simulation and standard pencil lead break tests. It was found that the mathematical errors complied with the acceptable minimal error. Based on the pencil lead break tests, the average technical error used to estimate the resolution of this technique was 4.7 mm at the present stage. The program was then used to monitor the fatigue damage in precoated cemented femoral hip constructs loaded for a total of more than five million cycles. Two types of microcrack activities were observed in the experiments: Type I and Type II microcracks. A Type I microcrack was a crack that was captured by four or more sensors, and therefore its location was defined uniquely by a set of coordinates. A Type II microcrack was a crack that was captured by three or less sensors, therefore it was unlocatable. Both counts of Type I and Type II microcrack were tallied with respect to the day of fatigue tests. Acoustic emission microcrack graphs were used to visualize the distribution of Type I microcracks in the construct. It was found that the Type I microcracks distributed mainly over the proximal third of the stem. The amount of microcrack events decreased significantly as the number of loading cycles increased. © 2004 Wiley Periodicals, Inc. J Biomed Mater Res 71A: 391–402, 2004 |
---|---|
ISSN: | 1549-3296 0021-9304 1552-4965 |
DOI: | 10.1002/jbm.a.30133 |