Characterizing the microscopic physics near moving contact lines using dynamic contact angle data
Directly probing the fluid flow and liquid-vapor interface shape in the microscopic immediate vicinity of the moving contact line can only be accomplished in very specific and isolated cases. Yet this physics is critical to macroscopic dynamic wetting. Here we examine the microscopic (or inner) phys...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-09, Vol.70 (3 Pt 1), p.031608-031608, Article 031608 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Directly probing the fluid flow and liquid-vapor interface shape in the microscopic immediate vicinity of the moving contact line can only be accomplished in very specific and isolated cases. Yet this physics is critical to macroscopic dynamic wetting. Here we examine the microscopic (or inner) physics of spreading silicone fluids using data of macroscopic dynamic contact angle versus Capillary number Ca=U mu/sigma. This dynamic contact angle is precisely defined so that it can be related back to the microscopic behavior through detailed theory. Our results indicate that the parameters describing the inner region have a detectable dependence on spreading velocity when this velocity exceeds a critical value. This dependence is not scaled (i.e., the data are not collapsed) by Ca, which suggests that an additional time scale must be present in the model of the inner region. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.70.031608 |