Mechanisms for Increased Glycolysis in the Hypertrophied Rat Heart

Glycolysis increases in hypertrophied hearts but the mechanisms are unknown. We studied the regulation of glycolysis in hearts with pressure-overload LV hypertrophy (LVH), a model that showed marked increases in the rates of glycolysis (by 2-fold) and insulin-independent glucose uptake (by 3-fold)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 2004-11, Vol.44 (5), p.662-667
Hauptverfasser: Nascimben, Luigino, Ingwall, Joanne S, Lorell, Beverly H, Pinz, Ilka, Schultz, Vera, Tornheim, Keith, Tian, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glycolysis increases in hypertrophied hearts but the mechanisms are unknown. We studied the regulation of glycolysis in hearts with pressure-overload LV hypertrophy (LVH), a model that showed marked increases in the rates of glycolysis (by 2-fold) and insulin-independent glucose uptake (by 3-fold). Although the Vmax of the key glycolytic enzymes was unchanged in this model, concentrations of free ADP, free AMP, inorganic phosphate (Pi), and fructose-2,6-bisphosphate (F-2,6-P2), all activators of the rate-limiting enzyme phosphofructokinase (PFK), were increased (up to 10-fold). Concentrations of the inhibitors of PFK, ATP, citrate, and H were unaltered in LVH. Thus, our findings show that increased glucose entry and activation of the rate-limiting enzyme PFK both contribute to increased flux through the glycolytic pathway in hypertrophied hearts. Moreover, our results also suggest that these changes can be explained by increased intracellular free [ADP] and [AMP], due to decreased energy reserve in LVH, activating the AMP-activated protein kinase cascade. This, in turn, results in enhanced synthesis of F-2,6-P2 and increased sarcolemma localization of glucose transporters, leading to coordinated increases in glucose transport and activation of PFK.
ISSN:0194-911X
1524-4563
DOI:10.1161/01.HYP.0000144292.69599.0c