Mid-Infrared Trace Gas Analysis with Single-Pass Fourier Transform Infrared Hollow Waveguide Gas Sensors
A hollow core optical fiber gas sensor has been developed in combination with a Fourier transform infrared (FT-IR) spectrometer operating in the spectral range of 4000–500 cm−1, enabling continuous detection of small volume gas-phase analytes such as CH4, CO2, C2H5Cl, or their mixtures at trace leve...
Gespeichert in:
Veröffentlicht in: | Applied spectroscopy 2009-03, Vol.63 (3), p.331-337 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hollow core optical fiber gas sensor has been developed in combination with a Fourier transform infrared (FT-IR) spectrometer operating in the spectral range of 4000–500 cm−1, enabling continuous detection of small volume gas-phase analytes such as CH4, CO2, C2H5Cl, or their mixtures at trace levels. Ag/Ag-halide hollow core optical fibers simultaneously serve as an optical waveguide for broad-band mid-infrared radiation and as a miniaturized absorption gas cell. Specifically, carbon dioxide, methane, and ethyl chloride as well as binary mixtures in a carrier gas were analyzed during exponential dilution experiments. In the studies reported here, the integration of an optical gas sensor with FT-IR spectroscopy provides excellent detection limits for small gas volumes (∼1.5 mL) of individual analytes at a few tens of parts per billion (ppb, vol/vol) for carbon dioxide and a few hundreds of ppb (vol/vol) for methane. Furthermore, the broad-band nature of the radiation source and of the hollow core optical waveguide provides the capability of multi-constituent analysis in mixtures. |
---|---|
ISSN: | 0003-7028 1943-3530 |
DOI: | 10.1366/000370209787598924 |