A pan-European survey of antimicrobial susceptibility towards human-use antimicrobial drugs among zoonotic and commensal enteric bacteria isolated from healthy food-producing animals

Objectives The aim of the study was to study antimicrobial susceptibility in Escherichia coli, Salmonella, Campylobacter and Enterococcus recovered from chickens, pigs and cattle using uniform methodology. Methods Intestinal samples were taken at slaughter in five EU countries per host and bacteria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of antimicrobial chemotherapy 2009-04, Vol.63 (4), p.733-744
Hauptverfasser: de Jong, Anno, Bywater, Robin, Butty, Pascal, Deroover, Erik, Godinho, Kevin, Klein, Ulrich, Marion, Hervé, Simjee, Shabbir, Smets, Katelijne, Thomas, Valérie, Vallé, Michel, Wheadon, Aileen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives The aim of the study was to study antimicrobial susceptibility in Escherichia coli, Salmonella, Campylobacter and Enterococcus recovered from chickens, pigs and cattle using uniform methodology. Methods Intestinal samples were taken at slaughter in five EU countries per host and bacteria isolated in national laboratories. MICs were determined in a central laboratory of key antimicrobials used in human medicine. Clinical resistance was based on CLSI breakpoints and decreased susceptibility on EFSA epidemiological cut-off values. Results Isolation rates from a total of 1500 samples were high for E. coli (n=1465), low for Salmonella (n=205) and intermediate for Campylobacter (n=785) and Enterococcus (n=718). Resistance prevalence varied among antibiotics, bacteria, hosts and countries. For E. coli and Salmonella, clinical resistance to newer compounds (cefepime, cefotaxime, ciprofloxacin) was absent or low, but a decreased susceptibility was apparent, particularly in chickens. Clinical resistance to older compounds (except colistin and gentamicin) was variable and higher. For Campylobacter jejuni from chickens, ciprofloxacin resistance was markedly higher than in isolates from cattle. Clinical resistance to erythromycin was absent for both hosts; decreased susceptibility very low. Similar trends were determined for Campylobacter coli, but C. jejuni was less resistant. None of the enterococcal strains was resistant to linezolid, but a few displayed resistance to ampicillin or vancomycin. Resistance prevalence to quinupristin/dalfopristin was clearly higher. Conclusions Antimicrobial resistance among enteric organisms in food animals varied among countries, particularly for older antimicrobials, but clinical resistance to essential compounds used to treat disease in humans was generally zero or low. In the absence of clinical resistance to newer compounds in E. coli and Salmonella, the apparent decreased susceptibility should be monitored carefully.
ISSN:0305-7453
1460-2091
DOI:10.1093/jac/dkp012