neural basis of Drosophila gravity-sensing and hearing

The neural substrates that the fruitfly Drosophila uses to sense smell, taste and light share marked structural and functional similarities with ours, providing attractive models to dissect sensory stimulus processing. Here we focus on two of the remaining and less understood prime sensory modalitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2009-03, Vol.458 (7235), p.165-171
Hauptverfasser: Kamikouchi, Azusa, Inagaki, Hidehiko K, Effertz, Thomas, Hendrich, Oliver, Fiala, Andre, Gopfert, Martin C, Ito, Kei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The neural substrates that the fruitfly Drosophila uses to sense smell, taste and light share marked structural and functional similarities with ours, providing attractive models to dissect sensory stimulus processing. Here we focus on two of the remaining and less understood prime sensory modalities: graviception and hearing. We show that the fly has implemented both sensory modalities into a single system, Johnston's organ, which houses specialized clusters of mechanosensory neurons, each of which monitors specific movements of the antenna. Gravity- and sound-sensitive neurons differ in their response characteristics, and only the latter express the candidate mechanotransducer channel NompC. The two neural subsets also differ in their central projections, feeding into neural pathways that are reminiscent of the vestibular and auditory pathways in our brain. By establishing the Drosophila counterparts of these sensory systems, our findings provide the basis for a systematic functional and molecular dissection of how different mechanosensory stimuli are detected and processed.
ISSN:0028-0836
1476-4687
1476-4679
DOI:10.1038/nature07810