Oral Tolerance Induced by Enterobacteria Altered the Process of Lymphocyte Recruitment to Intestinal Microvessels: Roles of Endothelial Cell Adhesion Molecules, TGF-beta and Negative Regulators of TLR Signaling

Objective: Although enterobacteria are implicated in intestinal immune response, there has been no report on how intraluminal pathogens affect lymphocyte recruitment. The aim of this study was to determine how the presence of intestinal flora affects lymphocyte migration to intestine under physiolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microcirculation (New York, N.Y. 1994) N.Y. 1994), 2009-04, Vol.16 (3), p.251-264
Hauptverfasser: Takebayashi, Koichi, Hokari, Ryota, Kurihara, Chie, Okada, Yoshikiyo, Okudaira, Keisuke, Matsunaga, Hisayuki, Komoto, Syunsuke, Watanabe, Chikako, Kawaguchi, Atsushi, Nagao, Shigeaki, Tsuzuki, Yoshikazu, Miura, Soichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective: Although enterobacteria are implicated in intestinal immune response, there has been no report on how intraluminal pathogens affect lymphocyte recruitment. The aim of this study was to determine how the presence of intestinal flora affects lymphocyte migration to intestine under physiological and lipopolysaccharide (LPS)-induced inflammatory conditions. Methods: Interaction of T-cells with ileal microvessels was monitored by using an intravital microscope in mice under germ-free (GF) and specific pathogen-free (SPF) conditions. LPS was administered into either the peritoneal cavity or duodenum before lymphocyte injection. Results: Adherence of T-cells was greater in SPF than in GF mice, indicating that the presence of enterobacteria upregulated migration under physiological conditions. Intraperitoneally administered LPS significantly increased the adherence of T-cells in both GF and SPF mice accompanied by the expression of adhesion molecules and proinflammatory cytokines. However, intraluminally administered LPS did not enhance the adherence of T-cells in SPF mice. A significant induction of increase in mRNA expression of IRAK-M, a negative regulator of TLR4 signaling, and transforming growth factor beta (TGF-beta), a regulatory cytokine, was observed in SPF mice after luminal LPS treatment. Conclusions: Tolerance to intraluminally administered LPS in the lymphocyte recruitment process was induced by enterobacteria, possibly via the induction of IRAK-M and TGF-beta.
ISSN:1073-9688
1549-8719
DOI:10.1080/10739680802574166