Cytokinin-induced structural adaptability of a Lupinus luteus PR-10 protein

Plant pathogenesis-related (PR) proteins of class 10 are the only group among the 17 PR protein families that are intracellular and cytosolic. Sequence conservation and the wide distribution of PR-10 proteins throughout the plant kingdom are an indication of an indispensable function in plants, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2009-03, Vol.276 (6), p.1596-1609
Hauptverfasser: Fernandes, Humberto, Bujacz, Anna, Bujacz, Grzegorz, Jelen, Filip, Jasinski, Michal, Kachlicki, Piotr, Otlewski, Jacek, Sikorski, Michal M, Jaskolski, Mariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plant pathogenesis-related (PR) proteins of class 10 are the only group among the 17 PR protein families that are intracellular and cytosolic. Sequence conservation and the wide distribution of PR-10 proteins throughout the plant kingdom are an indication of an indispensable function in plants, but their true biological role remains obscure. Crystal and solution structures for several homologues have shown a similar overall fold with a vast internal cavity which, together with structural similarities to the steroidogenic acute regulatory protein-related lipid transfer domain and cytokinin-specific binding proteins, strongly indicate a ligand-binding role for the PR-10 proteins. This article describes the structure of a complex between a classic PR-10 protein [Lupinus luteus (yellow lupine) PR-10 protein of subclass 2, LlPR-10.2B] and N,N'-diphenylurea, a synthetic cytokinin. Synthetic cytokinins have been shown in various bioassays to exhibit activity similar to that of natural cytokinins. The present 1.95 Å resolution crystallographic model reveals four N,N'-diphenylurea molecules in the hydrophobic cavity of the protein and a degree of conformational changes accompanying ligand binding. The structural adaptability of LlPR-10.2B and its ability to bind different cytokinins suggest that this protein, and perhaps other PR-10 proteins as well, can act as a reservoir of cytokinin molecules in the aqueous environment of a plant cell.
ISSN:1742-464X
1742-4658
DOI:10.1111/j.1742-4658.2009.06892.x