Phase transitions induced by nanoconfinement in liquid water

We present results from molecular dynamics simulations of water confined by two parallel atomically detailed hydrophobic walls. Simulations are performed at T = 300 K and wall-wall separation d = 0.6-1.6 nm. At 0.7 < or = d < or = 0.9 nm, a first order transition occurs between a bilayer liqui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2009-02, Vol.102 (5), p.050603-050603, Article 050603
Hauptverfasser: Giovambattista, Nicolas, Rossky, Peter J, Debenedetti, Pablo G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 050603
container_issue 5
container_start_page 050603
container_title Physical review letters
container_volume 102
creator Giovambattista, Nicolas
Rossky, Peter J
Debenedetti, Pablo G
description We present results from molecular dynamics simulations of water confined by two parallel atomically detailed hydrophobic walls. Simulations are performed at T = 300 K and wall-wall separation d = 0.6-1.6 nm. At 0.7 < or = d < or = 0.9 nm, a first order transition occurs between a bilayer liquid (BL) and a trilayer heterogeneous fluid (THF) as water density increases. The THF is characterized by a liquid (central) layer and two crystal-like layers next to the walls. The BL-THF transition involves freezing of the two surface layers in contact with the walls. At d = 0.6 nm, the THF transforms into a bilayer ice (BI) upon decompression. Both the BL-THF and BI-THF transitions are induced by the surface regular atomic-scale structure.
doi_str_mv 10.1103/physrevlett.102.050603
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66992684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66992684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e1721d4ad46ff91c4e2124b8e9e40822511e2aa77aedcbfe8d15217c553778c43</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRbK3-hZKTt9SZzSabBS9S_IKCRfQcNpsJXUk2bXZT6b83pQVPAzPvB_MwNkdYIELysN0cfE_7hkJYIPAFpJBBcsGmCFLFElFcsilAgrECkBN24_0PACDP8ms2QcVTKZScssf1RnuKQq-dt8F2zkfWVYOhKioPkdOuM52rraOWXBhPUWN3g62iXx2ov2VXtW483Z3njH2_PH8t3-LVx-v78mkVG8HzEBNKjpXQlcjqWqERxJGLMidFAnLOU0TiWkupqTJlTXmFKUdp0jSRMjcimbH7U-6273YD-VC01htqGu2oG3yRZUqNjx2F2Ulo-s6PfOpi29tW94cCoThyK9Yjt0_ar0Zu444XJ26jcX5uGMqWqn_bGVTyBxJdbOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66992684</pqid></control><display><type>article</type><title>Phase transitions induced by nanoconfinement in liquid water</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Giovambattista, Nicolas ; Rossky, Peter J ; Debenedetti, Pablo G</creator><creatorcontrib>Giovambattista, Nicolas ; Rossky, Peter J ; Debenedetti, Pablo G</creatorcontrib><description>We present results from molecular dynamics simulations of water confined by two parallel atomically detailed hydrophobic walls. Simulations are performed at T = 300 K and wall-wall separation d = 0.6-1.6 nm. At 0.7 &lt; or = d &lt; or = 0.9 nm, a first order transition occurs between a bilayer liquid (BL) and a trilayer heterogeneous fluid (THF) as water density increases. The THF is characterized by a liquid (central) layer and two crystal-like layers next to the walls. The BL-THF transition involves freezing of the two surface layers in contact with the walls. At d = 0.6 nm, the THF transforms into a bilayer ice (BI) upon decompression. Both the BL-THF and BI-THF transitions are induced by the surface regular atomic-scale structure.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.102.050603</identifier><identifier>PMID: 19257497</identifier><language>eng</language><publisher>United States</publisher><subject>Computer Simulation ; Models, Chemical ; Nanotechnology - methods ; Water - chemistry</subject><ispartof>Physical review letters, 2009-02, Vol.102 (5), p.050603-050603, Article 050603</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e1721d4ad46ff91c4e2124b8e9e40822511e2aa77aedcbfe8d15217c553778c43</citedby><cites>FETCH-LOGICAL-c428t-e1721d4ad46ff91c4e2124b8e9e40822511e2aa77aedcbfe8d15217c553778c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19257497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giovambattista, Nicolas</creatorcontrib><creatorcontrib>Rossky, Peter J</creatorcontrib><creatorcontrib>Debenedetti, Pablo G</creatorcontrib><title>Phase transitions induced by nanoconfinement in liquid water</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present results from molecular dynamics simulations of water confined by two parallel atomically detailed hydrophobic walls. Simulations are performed at T = 300 K and wall-wall separation d = 0.6-1.6 nm. At 0.7 &lt; or = d &lt; or = 0.9 nm, a first order transition occurs between a bilayer liquid (BL) and a trilayer heterogeneous fluid (THF) as water density increases. The THF is characterized by a liquid (central) layer and two crystal-like layers next to the walls. The BL-THF transition involves freezing of the two surface layers in contact with the walls. At d = 0.6 nm, the THF transforms into a bilayer ice (BI) upon decompression. Both the BL-THF and BI-THF transitions are induced by the surface regular atomic-scale structure.</description><subject>Computer Simulation</subject><subject>Models, Chemical</subject><subject>Nanotechnology - methods</subject><subject>Water - chemistry</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1Lw0AQhhdRbK3-hZKTt9SZzSabBS9S_IKCRfQcNpsJXUk2bXZT6b83pQVPAzPvB_MwNkdYIELysN0cfE_7hkJYIPAFpJBBcsGmCFLFElFcsilAgrECkBN24_0PACDP8ms2QcVTKZScssf1RnuKQq-dt8F2zkfWVYOhKioPkdOuM52rraOWXBhPUWN3g62iXx2ov2VXtW483Z3njH2_PH8t3-LVx-v78mkVG8HzEBNKjpXQlcjqWqERxJGLMidFAnLOU0TiWkupqTJlTXmFKUdp0jSRMjcimbH7U-6273YD-VC01htqGu2oG3yRZUqNjx2F2Ulo-s6PfOpi29tW94cCoThyK9Yjt0_ar0Zu444XJ26jcX5uGMqWqn_bGVTyBxJdbOg</recordid><startdate>20090206</startdate><enddate>20090206</enddate><creator>Giovambattista, Nicolas</creator><creator>Rossky, Peter J</creator><creator>Debenedetti, Pablo G</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090206</creationdate><title>Phase transitions induced by nanoconfinement in liquid water</title><author>Giovambattista, Nicolas ; Rossky, Peter J ; Debenedetti, Pablo G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e1721d4ad46ff91c4e2124b8e9e40822511e2aa77aedcbfe8d15217c553778c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer Simulation</topic><topic>Models, Chemical</topic><topic>Nanotechnology - methods</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giovambattista, Nicolas</creatorcontrib><creatorcontrib>Rossky, Peter J</creatorcontrib><creatorcontrib>Debenedetti, Pablo G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giovambattista, Nicolas</au><au>Rossky, Peter J</au><au>Debenedetti, Pablo G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase transitions induced by nanoconfinement in liquid water</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2009-02-06</date><risdate>2009</risdate><volume>102</volume><issue>5</issue><spage>050603</spage><epage>050603</epage><pages>050603-050603</pages><artnum>050603</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present results from molecular dynamics simulations of water confined by two parallel atomically detailed hydrophobic walls. Simulations are performed at T = 300 K and wall-wall separation d = 0.6-1.6 nm. At 0.7 &lt; or = d &lt; or = 0.9 nm, a first order transition occurs between a bilayer liquid (BL) and a trilayer heterogeneous fluid (THF) as water density increases. The THF is characterized by a liquid (central) layer and two crystal-like layers next to the walls. The BL-THF transition involves freezing of the two surface layers in contact with the walls. At d = 0.6 nm, the THF transforms into a bilayer ice (BI) upon decompression. Both the BL-THF and BI-THF transitions are induced by the surface regular atomic-scale structure.</abstract><cop>United States</cop><pmid>19257497</pmid><doi>10.1103/physrevlett.102.050603</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2009-02, Vol.102 (5), p.050603-050603, Article 050603
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_66992684
source MEDLINE; American Physical Society Journals
subjects Computer Simulation
Models, Chemical
Nanotechnology - methods
Water - chemistry
title Phase transitions induced by nanoconfinement in liquid water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20transitions%20induced%20by%20nanoconfinement%20in%20liquid%20water&rft.jtitle=Physical%20review%20letters&rft.au=Giovambattista,%20Nicolas&rft.date=2009-02-06&rft.volume=102&rft.issue=5&rft.spage=050603&rft.epage=050603&rft.pages=050603-050603&rft.artnum=050603&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.102.050603&rft_dat=%3Cproquest_cross%3E66992684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66992684&rft_id=info:pmid/19257497&rfr_iscdi=true