Phase transitions induced by nanoconfinement in liquid water
We present results from molecular dynamics simulations of water confined by two parallel atomically detailed hydrophobic walls. Simulations are performed at T = 300 K and wall-wall separation d = 0.6-1.6 nm. At 0.7 < or = d < or = 0.9 nm, a first order transition occurs between a bilayer liqui...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2009-02, Vol.102 (5), p.050603-050603, Article 050603 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present results from molecular dynamics simulations of water confined by two parallel atomically detailed hydrophobic walls. Simulations are performed at T = 300 K and wall-wall separation d = 0.6-1.6 nm. At 0.7 < or = d < or = 0.9 nm, a first order transition occurs between a bilayer liquid (BL) and a trilayer heterogeneous fluid (THF) as water density increases. The THF is characterized by a liquid (central) layer and two crystal-like layers next to the walls. The BL-THF transition involves freezing of the two surface layers in contact with the walls. At d = 0.6 nm, the THF transforms into a bilayer ice (BI) upon decompression. Both the BL-THF and BI-THF transitions are induced by the surface regular atomic-scale structure. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.102.050603 |