Bacterial communication: quorum-sensing

The interaction between the host and a pathogenic bacterium is mainly controlled by the bacterial population size. An individual bacterial cell is able to sense other members of the same species and in response, differentially expresses specific genes. Such cell to cell communication is called quoru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrobiyoloji bülteni 2004-07, Vol.38 (3), p.273-284
1. Verfasser: Cakar, Asli
Format: Artikel
Sprache:tur
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction between the host and a pathogenic bacterium is mainly controlled by the bacterial population size. An individual bacterial cell is able to sense other members of the same species and in response, differentially expresses specific genes. Such cell to cell communication is called quorum sensing (QS) and involves the direct or indirect activation of a response regulator by a signal molecule. The major QS signal molecules are N-acyl homoserine lactones in Gram negative bacteria and post-translationally modified peptides in Gram positive bacteria. QS system is used by a wide variety of bacteria including human pathogens. QS genes are important for the pathogenic potential of Pseudomonas aeruginosa and Staphylococcus aureus, as well as other invasive bacteria. Thus QS interfering molecules promise new therapeutic strategies or prophylactic measures in infectious diseases. In this review article, the role of QS system on bacterial virulence, its effects on the host immune response and QS inhibitors for prophylaxis and therapy are discussed.
ISSN:0374-9096