The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses
Non-cell-autonomous signals in the form of microRNAs and transcription factors could have important developmental functions. Plasmodesmata (PD) form a cytoplasmic network throughout the plant body and provide the means of symplasmic cell-to-cell transport in plants. Homeodomain transcription factors...
Gespeichert in:
Veröffentlicht in: | Current opinion in plant biology 2004-12, Vol.7 (6), p.641-650 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-cell-autonomous signals in the form of microRNAs and transcription factors could have important developmental functions. Plasmodesmata (PD) form a cytoplasmic network throughout the plant body and provide the means of symplasmic cell-to-cell transport in plants. Homeodomain transcription factors, small RNA molecules and viral genomic information move selectively to adjacent cells via PD microchannels. Tissue-specific expression studies of non-cell-autonomous transcription factors and RNA molecules have confirmed that their intercellular transport is a highly regulated process, which depends on the tissue, developmental stage and nature of the transported macromolecule. We have known for some time that gene-silencing signals spread both locally from cell to cell and across long distances following the source to sink transition. Recent work has provided evidence that small single-stranded silencing-induced RNAs and microRNA molecules are present in the phloem transport system of different plant species. Further, recent evidence has confirmed that the transport of silencing RNA via PD is a regulated and active process, and that an amplification–relay mechanism is in place for the long-distance spread of silencing signals. |
---|---|
ISSN: | 1369-5266 1879-0356 |
DOI: | 10.1016/j.pbi.2004.09.012 |