Oxygen sensing by H+: implications for HIF and hypoxic cell memory
Hypoxia and acidosis are common features of several physiological and pathological situations, including cancer and stroke. The HIF (hypoxia-inducible factor) transcription factor plays a seminal role in orchestrating cellular responses to alterations in oxygen availability. HIF is degraded in norma...
Gespeichert in:
Veröffentlicht in: | Cell cycle (Georgetown, Tex.) Tex.), 2004-08, Vol.3 (8), p.1027-1029 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hypoxia and acidosis are common features of several physiological and pathological situations, including cancer and stroke. The HIF (hypoxia-inducible factor) transcription factor plays a seminal role in orchestrating cellular responses to alterations in oxygen availability. HIF is degraded in normal oxygen tension by the VHL (von Hippel-Lindau) tumor suppressor protein but stabilized by hypoxia to activate an array of genes implicated in oxygen homeostasis including vascular endothelial growth factor. Cells respond to a comparatively mild decline in oxygen tension by converting to an anaerobic state of respiration and secreting lactic acid. We recently reported that a decrease in environmental pH triggers sequestration of VHL into the nucleolus neutralizing its ability to degrade HIF. This implies that cells have evolved a parallel mechanism of HIF activation that responds to changes in oxygen levels by sensing extracellular [H+]. Here we discuss the implications of this new VHL regulatory mechanism on oxygen homeostasis and hypoxic cell memory. |
---|---|
ISSN: | 1551-4005 |