Efficient high-order evaluation of scattering by periodic surfaces : deep gratings, high frequencies, and glancing incidences

We present a superalgebraically convergent integral equation algorithm for evaluation of TE and TM electromagnetic scattering by smooth perfectly conducting periodic surfaces z=f(x). For grating-diffraction problems in the resonance regime (heights and periods up to a few wavelengths) the proposed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2009-03, Vol.26 (3), p.658-668
Hauptverfasser: BRUNO, Oscar P, HASLAM, Michael C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a superalgebraically convergent integral equation algorithm for evaluation of TE and TM electromagnetic scattering by smooth perfectly conducting periodic surfaces z=f(x). For grating-diffraction problems in the resonance regime (heights and periods up to a few wavelengths) the proposed algorithm produces solutions with full double-precision accuracy in single-processor computing times of the order of a few seconds. The algorithm can also produce, in reasonable computing times, highly accurate solutions for very challenging problems, such as (a) a problem of diffraction by a grating for which the peak-to-trough distance equals 40 times its period that, in turn, equals 20 times the wavelength; and (b) a high-frequency problem with very small incidence, up to 0.01 degrees from glancing. The algorithm is based on the concurrent use of Floquet and Chebyshev expansions together with certain integration weights that are computed accurately by means of an asymptotic expansion as the number of integration points tends to infinity.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.26.000658