Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion

Autotransporter (AT) proteins are a large and diverse family of extracellular virulence proteins from Gram-negative bacteria, characterized by a central β-helix domain within the mature virulence protein. It is not clear how these proteins cross the outer membrane (OM) quickly and efficiently, witho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2009-03, Vol.71 (5), p.1323-1332
Hauptverfasser: Junker, Mirco, Besingi, Richard N, Clark, Patricia L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Autotransporter (AT) proteins are a large and diverse family of extracellular virulence proteins from Gram-negative bacteria, characterized by a central β-helix domain within the mature virulence protein. It is not clear how these proteins cross the outer membrane (OM) quickly and efficiently, without assistance from an external energy source such as ATP or a proton gradient. Conflicting results in the literature have led to several proposed mechanisms for AT OM secretion, including a concerted process, or vectorial secretion with different directionalities. We introduced pairs of cysteine residues into the passenger sequence of pertactin, an AT virulence protein from Bordetella pertussis, and show that OM secretion of the passenger domain stalls due to the formation of a disulphide bond. We further show that the C-terminus of the pertactin passenger domain β-helix crosses the OM first, followed by the N-terminal portions of the virulence protein. In vivo proteolytic digestion shows that the C-terminus is exposed to the extracellular milieu during stalling, and forms stable structure. These AT secretion and folding features can potentially facilitate efficient secretion.
ISSN:0950-382X
1365-2958
DOI:10.1111/j.1365-2958.2009.06607.x