Multicopy Suppressors for Novel Antibacterial Compounds Reveal Targets and Drug Efflux Susceptibility

Gene dosage has frequently been exploited to select for genetic interactions between a particular mutant and clones from a random genomic library at high copy. We report here the first use of multicopy suppression as a forward genetic method to determine cellular targets and potential resistance mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry & biology 2004-10, Vol.11 (10), p.1423-1430
Hauptverfasser: Li, Xiaoming, Zolli-Juran, Michela, Cechetto, Jonathan D., Daigle, Denis M., Wright, Gerard D., Brown, Eric D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gene dosage has frequently been exploited to select for genetic interactions between a particular mutant and clones from a random genomic library at high copy. We report here the first use of multicopy suppression as a forward genetic method to determine cellular targets and potential resistance mechanisms for novel antibacterial compounds identified through high-throughput screening. A screen of 8640 small molecules for growth inhibition of a hyperpermeable strain of Escherichia coli led to the identification of 49 leads for suppressor selection from clones harboring an E. coli genomic library. The majority of suppressors were found to encode the multidrug efflux pump AcrB, indicating that those compounds were substrates for efflux. Two leads, which produced clones containing the gene folA, encoding dihydrofolate reductase (DHFR), proved to target DHFR in vivo and were competitive inhibitors in vitro.
ISSN:1074-5521
1879-1301
DOI:10.1016/j.chembiol.2004.08.014