Cell type-specific expression of endogenous cardiac Troponin I antisense RNA in the neonatal rat heart

Since the number of detected natural antisense RNA is growing, investigations upon the expression pattern of the antisense RNA become more important. As we focused our work on natural occurring antisense transcripts in human and rat heart tissues, we were interested in the question, whether the expr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2009-04, Vol.324 (1-2), p.1-11
Hauptverfasser: Voigtsberger, Stefanie, Bartsch, Holger, Baumann, Gert, Luther, Hans Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the number of detected natural antisense RNA is growing, investigations upon the expression pattern of the antisense RNA become more important. As we focused our work on natural occurring antisense transcripts in human and rat heart tissues, we were interested in the question, whether the expression pattern of antisense and sense RNA can vary in different cell types of the same tissue. In our previous analysis of total neonatal rat heart tissue, we demonstrated the co-expression of both cTnI RNA species in this tissue. Now we investigated the expression of antisense and sense RNA quantitatively in neonatal cardiomyocytes (NCMs) and neonatal cardiac fibroblasts (NCFs). Performing northern blot as well as RT-PCR, we could detect natural antisense and sense RNA transcripts of cTnI in NCM and NCF implying that these transcripts are co-expressed in both cell types. The absolute amounts of the RNA transcripts were higher in NCM. Both RNA species showed identical sizes in the northern blot. Quantification by real-time PCR revealed a higher relative level of natural antisense RNA in NCF compared to NCM which points out to a cell type-specific expression of sense and antisense RNA. Our observations suggest that antisense RNA transcription may contribute to a cell type-specific regulation of the cTnI gene.
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-008-9974-3