Dark-to-light transition in Synechococcus sp. PCC 7942 cells studied by fluorescence kinetics assesses plastoquinone redox poise in the dark and photosystem II fluorescence component and dynamics during state 2 to state 1 transition

We investigated the dark-to-light transition in Synechococcus sp. PCC 7942 cells by a detailed analysis of fluorescence transients induced by strong red light. The transients, recorded with high data-acquisition, revealed all the steps of the fast (OJIP; 10⁻⁵-1 s) and slow phase (PSM(T); 1-10³ s), k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 2009-03, Vol.99 (3), p.243-255
Hauptverfasser: Tsimilli-Michael, Merope, Stamatakis, Kostas, Papageorgiou, George C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the dark-to-light transition in Synechococcus sp. PCC 7942 cells by a detailed analysis of fluorescence transients induced by strong red light. The transients, recorded with high data-acquisition, revealed all the steps of the fast (OJIP; 10⁻⁵-1 s) and slow phase (PSM(T); 1-10³ s), kinetically distinguished with precision. Focusing on the OJIP-rise, we show, for the first time, how the variable to initial fluorescence ratio and the relative height of J-level can serve as indexes of the plastoquinone redox poise and the established state in the dark; hence, differences among cyanobacteria can be recognised in a simple way. Applying intermittent illumination (20-s light pulses separated by 10-s dark intervals) to induce dark-to-light transition and analysing the individual transients, we establish a method by which we determine the fluorescence component not originating from photosystem (PS) II and we assess PSII dynamics during state 2 to state 1 transition. The development of photochemical and non-photochemical quenching is also discussed, as well as evidences favouring the mobile antenna model.
ISSN:0166-8595
1573-5079
DOI:10.1007/s11120-009-9405-7