Data mining in bioinformatics using Weka

The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection—common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2004-10, Vol.20 (15), p.2479-2481
Hauptverfasser: Frank, Eibe, Hall, Mark, Trigg, Len, Holmes, Geoffrey, Witten, Ian H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection—common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing methods complemented by graphical user interfaces for data exploration and the experimental comparison of different machine learning techniques on the same problem. Weka can process data given in the form of a single relational table. Its main objectives are to (a) assist users in extracting useful information from data and (b) enable them to easily identify a suitable algorithm for generating an accurate predictive model from it. Availability: http://www.cs.waikato.ac.nz/ml/weka
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/bth261