Data mining in bioinformatics using Weka
The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection—common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing met...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2004-10, Vol.20 (15), p.2479-2481 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Weka machine learning workbench provides a general-purpose environment for automatic classification, regression, clustering and feature selection—common data mining problems in bioinformatics research. It contains an extensive collection of machine learning algorithms and data pre-processing methods complemented by graphical user interfaces for data exploration and the experimental comparison of different machine learning techniques on the same problem. Weka can process data given in the form of a single relational table. Its main objectives are to (a) assist users in extracting useful information from data and (b) enable them to easily identify a suitable algorithm for generating an accurate predictive model from it. Availability: http://www.cs.waikato.ac.nz/ml/weka |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/bth261 |