Antipsychotic-Like Effect of Retigabine [N-(2-Amino-4-(fluorobenzylamino)-phenyl)carbamic Acid Ester], a KCNQ Potassium Channel Opener, via Modulation of Mesolimbic Dopaminergic Neurotransmission

Dopaminergic (DAergic) neurons in the ventral tegmental area express both KCNQ2 and KCNQ4 channels, which opening is expected to decrease neuronal excitability via neuronal hyper-polarization. Because psychotic symptoms are believed to be associated with an increased excitability of dopamine (DA) ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pharmacology and experimental therapeutics 2009-03, Vol.328 (3), p.951-962
Hauptverfasser: Florence Sotty, Trine Damgaard, Liliana P. Montezinho, Arne Mørk, Christina K. Olsen, Christoffer Bundgaard, Henriette Husum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dopaminergic (DAergic) neurons in the ventral tegmental area express both KCNQ2 and KCNQ4 channels, which opening is expected to decrease neuronal excitability via neuronal hyper-polarization. Because psychotic symptoms are believed to be associated with an increased excitability of dopamine (DA) cells in the mesencephalon, KCNQ channels might represent a new potential target for the treatment of psychosis. The aim of our study was to investigate the antipsychotic-like potential of KCNQ channel opening via modulation of neuronal activity within the mesolimbic DAergic system. We report that retigabine [ N -(2-amino-4-(fluorobenzylamino)-phenyl)carbamic acid ester], a KCNQ opener, dose-dependently reduced basal DA firing rate and more potently suppressed burst firing activity in the ventral tegmental area, whereas XE-991 [10,10-bis(pyridinylmethyl)-9(10 H )-anthracenone], a selective KCNQ blocker, induced opposite effects. In addition, retigabine prevented d -amphetamine-induced DA efflux in the nucleus accumbens and d -amphetamine-induced locomotor hyperactivity. In contrast, XE-991 potentiated both the locomotor hyperactivity and DA efflux evoked by d -amphetamine. These data strongly suggest that the activation of KCNQ channels attenuates DAergic neurotransmission in the mesolimbic system, particularly in conditions of excessive DAergic activity. In a model predictive of antipsychotic activity, the conditioned avoidance response paradigm, retigabine was found to inhibit avoidance responses, an effect blocked by coadministration of XE-991. Furthermore, retigabine was found to significantly inhibit the hyperlocomotor response to a phencyclidine (PCP) challenge in PCP-sensitized animals, considered as a disease model for schizophrenia. Taken together, our studies provide evidence that KCNQ channel openers represent a potential new class of antipsychotics.
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.108.146944