Marrow stromal cells and osteoclast precursors differentially contribute to TNF-alpha-induced osteoclastogenesis in vivo

The marrow stromal cell is the principal source of the key osteoclastogenic cytokine receptor activator of NF-kappaB (RANK) ligand (RANKL). To individualize the role of marrow stromal cells in varying states of TNF-alpha-driven osteoclast formation in vivo, we generated chimeric mice in which wild-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2004-10, Vol.173 (8), p.4838-4846
Hauptverfasser: Kitaura, Hideki, Sands, Mark S, Aya, Kunihiko, Zhou, Ping, Hirayama, Teruhisa, Uthgenannt, Brian, Wei, Shi, Takeshita, Sunao, Novack, Deborah Veis, Silva, Matthew J, Abu-Amer, Yousef, Ross, F Patrick, Teitelbaum, Steven L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The marrow stromal cell is the principal source of the key osteoclastogenic cytokine receptor activator of NF-kappaB (RANK) ligand (RANKL). To individualize the role of marrow stromal cells in varying states of TNF-alpha-driven osteoclast formation in vivo, we generated chimeric mice in which wild-type (WT) marrow, immunodepleted of T cells and stromal cells, is transplanted into lethally irradiated mice deleted of both the p55 and p75 TNFR. As control, similarly treated WT marrow was transplanted into WT mice. Each group was administered increasing doses of TNF-alpha. Exposure to high-dose cytokine ex vivo induces exuberant osteoclastogenesis irrespective of in vivo TNF-alpha treatment or whether the recipient animals possess TNF-alpha-responsive stromal cells. In contrast, the osteoclastogenic capacity of marrow treated with lower-dose TNF-alpha requires priming by TNFR-bearing stromal cells in vivo. Importantly, the osteoclastogenic contribution of cytokine responsive stromal cells in vivo diminishes as the dose of TNF-alpha increases. In keeping with this conclusion, mice with severe inflammatory arthritis develop profound osteoclastogenesis and bone erosion independent of stromal cell expression of TNFR. The direct induction of osteoclast recruitment by TNF-alpha is characterized by enhanced RANK expression and sensitization of precursor cells to RANKL. Thus, osteolysis attending relatively modest elevations in ambient TNF-alpha depends upon responsive stromal cells. Alternatively, in states of severe periarticular inflammation, TNF-alpha may fully exert its bone erosive effects by directly promoting the differentiation of osteoclast precursors independent of cytokine-responsive stromal cells and T lymphocytes.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.173.8.4838