A single amino acid residue is responsible for species-specific incompatibility between CCT and α-actin
Actin is dependent on the type-II chaperonin CCT (chaperonin containing TCP-1) to reach its native state. In vitro, yeast CCT folds yeast and also mammalian cytoplasmic (β/γ) actins but is now found to be incapable of folding mammalian skeletal muscle α-actin. Arrest of α-actin on yeast CCT at a fol...
Gespeichert in:
Veröffentlicht in: | FEBS letters 2009-02, Vol.583 (4), p.782-786 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Actin is dependent on the type-II chaperonin CCT (chaperonin containing TCP-1) to reach its native state. In vitro, yeast CCT folds yeast and also mammalian cytoplasmic (β/γ) actins but is now found to be incapable of folding mammalian skeletal muscle α-actin. Arrest of α-actin on yeast CCT at a folding cycle intermediate has been observed by electron microscopy. This discovery explains previous observations in vivo that yeast mutants expressing only the muscle actin gene are non-viable. Mutational analysis identified a single specific α-actin residue, Asn-297, that confers this species/isoform folding specificity. The implications of this incompatibility for chaperonin mechanism and actin–CCT co-evolution are discussed. |
---|---|
ISSN: | 0014-5793 1873-3468 |
DOI: | 10.1016/j.febslet.2009.01.031 |