Interaction of non-ionic surfactants with hepatic CYP in Prochilodus scrofa
Cytochromes P450 (CYP) constitute a superfamily of hemeproteins that play a vital role in the metabolism of a wide variety of endogenous and xenobiotic compounds. Xenobiotic metabolism and the role of CYP are of particular interest in studies regarding the prevention of the damage caused by chemical...
Gespeichert in:
Veröffentlicht in: | Toxicology in vitro 2004-12, Vol.18 (6), p.859-867 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cytochromes P450 (CYP) constitute a superfamily of hemeproteins that play a vital role in the metabolism of a wide variety of endogenous and xenobiotic compounds. Xenobiotic metabolism and the role of CYP are of particular interest in studies regarding the prevention of the damage caused by chemical pollutants. We investigated, in this study, the interaction of Triton X-100 and Tween 80 with CYP and antioxidant defenses in Curimbatá, a Brazilian fish. Aiming to clarify the effects of non-ionic surfactants in the monooxigenase system of fish through in vitro study, the effects of Triton X-100 and Tween 80 were analyzed using monooxygenases and antioxidant system as experimental model. Total CYP and EROD were strongly inhibited by Triton X-100 and Tween 80 in a concentration-dependent way; the content of CYP was reduced until zero while EROD activity was completely inhibited in the presence of Triton X-100 and more than 40% inhibited in the presence of Tween 80. Each surfactant causes a different effect on each antioxidant enzyme. No effect was detected in SOD activity in the presence of even Triton X-100 or Tween 80. Triton X-100 increase catalase activity, while Tween 80 decreases this enzyme activity. The molecular structure of the surfactants causes the alteration of this system, since they are able to interact with the microsomal protein, especially with monooxigenase's components, altering their conformation and, consequently destroying their function. Our results suggest that surfactants can interact with components of the microsomal system leading to inhibition of CYP. Therefore, CYP activity, which has been used as a biomarker of xenobiotic exposure, should be used as a marker in association with other enzymes. |
---|---|
ISSN: | 0887-2333 1879-3177 |
DOI: | 10.1016/j.tiv.2004.04.006 |