High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging

Idiopathic Parkinson’s disease (PD) involves a systemic loss of activity of complex I of the mitochondrial electron transport chain. This biochemical lesion plays a key pathogenic role. Transfer of PD mitochondrial DNA recapitulates this loss of activity and several other pathogenic features of PD s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurobiology of aging 2004-11, Vol.25 (10), p.1273-1281
Hauptverfasser: Smigrodzki, Rafal, Parks, Janice, Parker, W.Davis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Idiopathic Parkinson’s disease (PD) involves a systemic loss of activity of complex I of the mitochondrial electron transport chain. This biochemical lesion plays a key pathogenic role. Transfer of PD mitochondrial DNA recapitulates this loss of activity and several other pathogenic features of PD suggesting that this lesion may arise, at least in part, from mitochondrial DNA. We investigated this possibility by an extensive clonal sequencing of the seven mitochondrial genes encoding complex I subunits in PD and age-matched control frontal cortex. Each gene was completely sequenced an average of 94.4 times for each subject. Aminoacid-changing mutations were found at the frequency of 59.3 per million bases in both PD and controls, corresponding to approximately 32% of the mitochondrial genomes in the average sample having at least one mutation in a complex I gene. Individual low frequency mutations had an abundance of 1–10%. Significant interindividual variation in mutation frequency was observed. Several aminoacid-changing mutations were identified and multiple PD brains but not in controls. Genetic algorithm analysis detected areas in ND genes with a higher mutation frequency in PD that allowed differentiation of PD from controls. Total mutational burden due to low-abundance heteroplasmy is high and may play a role in human disease.
ISSN:0197-4580
1558-1497
DOI:10.1016/j.neurobiolaging.2004.02.020