Using quaternions to calculate RMSD

A widely used way to compare the structures of biomolecules or solid bodies is to translate and rotate one structure with respect to the other to minimize the root‐mean‐square deviation (RMSD). We present a simple derivation, based on quaternions, for the optimal solid body transformation (rotation‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2004-11, Vol.25 (15), p.1849-1857
Hauptverfasser: Coutsias, Evangelos A., Seok, Chaok, Dill, Ken A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A widely used way to compare the structures of biomolecules or solid bodies is to translate and rotate one structure with respect to the other to minimize the root‐mean‐square deviation (RMSD). We present a simple derivation, based on quaternions, for the optimal solid body transformation (rotation‐translation) that minimizes the RMSD between two sets of vectors. We prove that the quaternion method is equivalent to the well‐known formula due to Kabsch. We analyze the various cases that may arise, and give a complete enumeration of the special cases in terms of the arrangement of the eigenvalues of a traceless, 4 × 4 symmetric matrix. A key result here is an expression for the gradient of the RMSD as a function of model parameters. This can be useful, for example, in finding the minimum energy path of a reaction using the elastic band methods or in optimizing model parameters to best fit a target structure. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1849–1857, 2004
ISSN:0192-8651
1096-987X
DOI:10.1002/jcc.20110