Establishment of a transitory dorsal-biased window of localized Ca2+ signaling in the superficial epithelium following the mid-blastula transition in zebrafish embryos

Using complementary luminescent- and fluorescent-based Ca2+ imaging techniques, we have re-examined the Ca2+ dynamics that occur during the Blastula Period (BP) of zebrafish development. We confirm that aperiodic, localized Ca2+ transients are generated predominately in the superficial epithelial ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 2009-03, Vol.327 (1), p.143-157
Hauptverfasser: Ma, Leung Hang, Webb, Sarah E., Chan, Ching Man, Zhang, Jiao, Miller, Andrew L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using complementary luminescent- and fluorescent-based Ca2+ imaging techniques, we have re-examined the Ca2+ dynamics that occur during the Blastula Period (BP) of zebrafish development. We confirm that aperiodic, localized Ca2+ transients are generated predominately in the superficial epithelial cells (SECs). At the start of the BP, these Ca2+ transients are distributed homogeneously throughout the entire superficial epithelium. Following the mid-blastula transition (MBT), however, their distribution becomes asymmetrical, where a significantly greater number are generated in the presumptive dorsal quadrant of the superficial epithelium. This asymmetry in Ca2+ signaling lasts for around 60 min, after which the total number of transients generated from the entire superficial epithelium falls to less than one per minute until the end of the BP. We have thus called this asymmetry the “dorsal-biased Ca2+ signaling window”. The application of pharmacological agents indicates that the post-MBT SEC Ca2+ transients are generated via the phosphatidylinositol (PI) signaling pathway. This suggests that the previously reported ventralizing function attributed to the homogeneously distributed PI pathway-generated SEC Ca2+ transients is most likely to occur earlier in development, prior to the MBT.
ISSN:0012-1606
1095-564X
DOI:10.1016/j.ydbio.2008.12.015