Discovery of Ixabepilone

The discovery of the antineoplastic agent paclitaxel and its unique activity as a microtubule-stabilizing agent resulted in dramatic improvements in the treatment of breast, ovarian, and non-small cell lung cancers. Despite the potent antitumor activity of taxanes such as paclitaxel, efficacy of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer therapeutics 2009-02, Vol.8 (2), p.275-281
1. Verfasser: Hunt, John T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discovery of the antineoplastic agent paclitaxel and its unique activity as a microtubule-stabilizing agent resulted in dramatic improvements in the treatment of breast, ovarian, and non-small cell lung cancers. Despite the potent antitumor activity of taxanes such as paclitaxel, efficacy of these agents has been limited by development of taxane-resistant tumors in patients. This review describes, with some historical context, our successful efforts to discover a next-generation microtubule-stabilizing agent for the treatment of cancer. In collaboration with the Gesellschaft für Biotechnologische Forschung, we evaluated the epothilones, originally isolated from the myxobacterium Sorangium cellulosum , as potential anticancer agents. Experiments performed at Bristol-Myers Squibb confirmed the ability of these agents to induce tubulin polymerization, cell cycle arrest, and apoptosis. Epothilones A and B showed potent cytotoxic activity toward paclitaxel-sensitive and paclitaxel-resistant cells expressing P-glycoprotein or mutant tubulin. Because the parent epothilones were subject to inactivation via esterase cleavage, we used semisynthetic approaches to prepare analogues without this liability. BMS-247550 (ixabepilone), the lactam analogue of epothilone B, showed increased metabolic stability, potent tubulin polymerization activity, and retained activity against paclitaxel-resistant lines. Based on its shown efficacy in clinical trials, ixabepilone was approved by the Food and Drug Administration in 2007 for treatment of drug-resistant/refractory metastatic or locally advanced breast cancer. [Mol Cancer Ther 2009;8(2):275–81]
ISSN:1535-7163
1538-8514
DOI:10.1158/1535-7163.MCT-08-0999