Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuated Salmonella typhimurium

Abstract Protective immune responses in shrimp induced by DNA vaccines against white spot syndrome virus (WSSV) with intramuscular injection have been reported in recent reports. In this study, we investigated the utilities of attenuated Salmonella enterica serovar Typhimurium ( Salmonella typhimuri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vaccine 2009-02, Vol.27 (7), p.1127-1135
Hauptverfasser: Ning, Jian-Fang, Zhu, Wei, Xu, Jin-Ping, Zheng, Cong-Yi, Meng, Xiao-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Protective immune responses in shrimp induced by DNA vaccines against white spot syndrome virus (WSSV) with intramuscular injection have been reported in recent reports. In this study, we investigated the utilities of attenuated Salmonella enterica serovar Typhimurium ( Salmonella typhimurium ) as a bactofection vehicle for the oral delivery of a DNA vaccine plasmid to crayfish ( Cambarus clarkii ). The DNA vaccine plasmid pcDNA3.1-VP28, encoding viral envelope protein VP28, was transformed to an attenuated S. typhimurium strain SV4089 and the resulting recombinant bacteria named SV/pcDNA3.1-VP28 were used to orally immunize crayfish with coated feed. Successful delivery of the DNA vaccine plasmid was shown by the isolation of recombinant bacteria SV/pcDNA3.1-VP28 from the vaccinated crayfish. The distribution analysis of plasmid pcDNA3.1-VP28 in different tissues revealed the effective release of DNA vaccine plasmid into crayfish. RT-PCR and immunoflurescence results confirmed the expression of protein VP28 in the vaccinated crayfish. Challenge experiments with WSSV at 7, 15, 25 days post-vaccination demonstrated significant protection in immunized crayfish with relative survival rate 83.3%, 66.7% and 56.7%, respectively. Studies on stability and safety of SV/pcDNA3.1-VP28 showed the recombinant bacteria could exist in crayfish at least 7 days but not more than 10 days and without any observable harm to the host. Our study here demonstrates, for the first time, the ability of attenuated Salmonella as a live vector to orally deliver a DNA vaccine against WSSV into the arthropod crayfish and provides a new way to design more practical strategies for the control of WSSV and other invertebrate pathogens.
ISSN:0264-410X
1873-2518
DOI:10.1016/j.vaccine.2008.11.075