Modeling exopeptidase activity from LC-MS data

Recent studies demonstrate that the peptides in the serum of cancer patients that are generated (ex vivo) as a result of tumor protease activity can be used for the detection and classification of cancer. In this paper, we propose the first formal approach to modeling exopeptidase activity from liqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2009-02, Vol.16 (2), p.395-406
Hauptverfasser: Kluge, Bogusław, Gambin, Anna, Niemiro, Wojciech
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies demonstrate that the peptides in the serum of cancer patients that are generated (ex vivo) as a result of tumor protease activity can be used for the detection and classification of cancer. In this paper, we propose the first formal approach to modeling exopeptidase activity from liquid chromatography-mass spectrometry (LC-MS) samples. We design a statistical model of peptidome degradation and a Metropolis-Hastings algorithm for Bayesian inference of model parameters. The model is successfully validated on a real LC-MS dataset. Our findings support the hypotheses about disease-specific exopeptidase activity, which can lead to new diagnostic approach in clinical proteomics.
ISSN:1066-5277
1557-8666
DOI:10.1089/cmb.2008.22TT