Microencapsulation of tamoxifen: Application to cotton fabric

Tamoxifen microcapsules and drug loaded medicated fabrics were investigated. The microcapsules were prepared using a complex coacervation procedure involving gelatin B and acacia gum. The morphology, particle size, drug loading capacity and in vitro release characteristics of the drug microcapsules...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2009-02, Vol.69 (1), p.85-90
Hauptverfasser: Ma, Zong-Hui, Yu, Deng-Guang, Branford-White, Christopher J., Nie, Hua-Li, Fan, Zai-Xia, Zhu, Li-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tamoxifen microcapsules and drug loaded medicated fabrics were investigated. The microcapsules were prepared using a complex coacervation procedure involving gelatin B and acacia gum. The morphology, particle size, drug loading capacity and in vitro release characteristics of the drug microcapsules were optimized for coating tamoxifen microcapsules onto the cotton fabrics. Infrared (IR) spectra and SEM were used to characterize the medicated fabrics and air permeability and laundering testing were undertaken to determine the efficiency and effectiveness of the system. Results showed that optimum condition for the microcapsules was at drug/polymer ratio 1:4, polymer concentration 3%, and rate of stirring 1000 rpm. In vitro release assays demonstrated that the tamoxifen was liberated over 10 h after an initial bust rate period. SEM images illustrated that the tamoxifen microcapsules were spherical in shape and were also tightly fixed on to the cotton fabrics fast. These observations demonstrate that we have designed and fabricated a medicated system that potentially could be applied within a transdermal drug delivery system and so act in a system for the treatment of breast cancer.
ISSN:0927-7765
1873-4367
DOI:10.1016/j.colsurfb.2008.11.005