Label-Free Biosensing by Surface Plasmon Resonance of Nanoparticles on Glass: Optimization of Nanoparticle Size
The unique optical properties of noble metal nanoparticles have been used to design a label-free biosensor in a chip format. In this paper, we demonstrate that the size of gold nanoparticles significantly affects the sensitivity of the biosensor. Gold nanoparticles with diameters in the range of 12−...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2004-09, Vol.76 (18), p.5370-5378 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The unique optical properties of noble metal nanoparticles have been used to design a label-free biosensor in a chip format. In this paper, we demonstrate that the size of gold nanoparticles significantly affects the sensitivity of the biosensor. Gold nanoparticles with diameters in the range of 12−48 nm were synthesized in solution and sensor chips were fabricated by chemisorption of these nanoparticles on amine-functionalized glass. Sensors fabricated from 39-nm-diameter gold nanoparticles exhibited maximum sensitivity to the change of the bulk refractive index and the largest “analytical volume”, defined as the region around the nanoparticle within which a change in refractive index causes a change in the optical properties of the immobilized nanoparticles. The detection limit for streptavidin−biotin binding of a sensor fabricated from 39-nm-diameter nanoparticles was 20-fold better than a previously reported sensor fabricated from 13-nm-diameter gold nanoparticles. We also discuss several other factors that could improve the performance of the next generation of these immobilized metal nanoparticle sensors. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac049741z |