Assist-Control Mechanical Ventilation Attenuates Ventilator-induced Diaphragmatic Dysfunction
Controlled mechanical ventilation induced a profound diaphragm muscle dysfunction and atrophy. The effects of diaphragmatic contractions with assisted mechanical ventilation on diaphragmatic isometric, isotonic contractile properties, or the expression of muscle atrophy factor-box (MAF-box), the gen...
Gespeichert in:
Veröffentlicht in: | American journal of respiratory and critical care medicine 2004-09, Vol.170 (6), p.626-632 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Controlled mechanical ventilation induced a profound diaphragm muscle dysfunction and atrophy. The effects of diaphragmatic contractions with assisted mechanical ventilation on diaphragmatic isometric, isotonic contractile properties, or the expression of muscle atrophy factor-box (MAF-box), the gene responsible for muscle atrophy, are unknown. We hypothesize that assisted mechanical ventilation will preserve diaphragmatic force and prevent overexpression of MAF-box. Studying sedated rabbits randomized equally into control animals, those with 3 days of assisted ventilation, and those with controlled ventilation, we assessed in vitro diaphragmatic isometric and isotonic contractile function. The concentrations of contractile proteins, myosin heavy chain isoform, and MAF-box mRNA were measured. Tetanic force decreased by 14% with assisted ventilation and 48% with controlled ventilation. Maximum shortening velocity tended to increase with controlled compared with assisted ventilation and control. Peak power output decreased 20% with assisted ventilation and 41% with controlled ventilation. Contractile proteins were unchanged with either modes of ventilation; myosin heavy chain 2X mRNA tended to increase and that of 2A to decrease with controlled ventilation. MAF-box gene was overexpressed with controlled ventilation. We conclude that preserving diaphragmatic contractions during mechanical ventilation attenuates the force loss induced by complete inactivity and maintains MAF-box gene expression in control. |
---|---|
ISSN: | 1073-449X 1535-4970 |
DOI: | 10.1164/rccm.200401-042OC |